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Abstract 

Background Climate change is impacting the distribution and movement of mobile marine organisms globally. 
Statistical species distribution models are commonly used to explain past patterns and anticipate future shifts. 
However, purely correlative models can fail under novel environmental conditions, or omit key mechanistic processes 
driving species habitat use.

Methods Here, we used a unique combination of laboratory measurements, field observations, and environmental 
predictors to investigate spatial variability in energetic seascapes for juvenile North Pacific albacore tuna (Thunnus 
alalunga). This species undertakes some of the longest migrations of any finfish, but their susceptibility to climate‑
driven habitat changes is poorly understood. We first built a framework based on Generalized Additive Models 
to understand mechanisms of energy gain and loss in albacore, and how these are linked to ocean conditions. We 
then applied the framework to projections from an ensemble of earth system models to quantify changes in thermal 
and foraging habitats between historical (1971–2000) and future (2071–2100) time periods.

Results We show how albacore move seasonally between feeding grounds in the California Current System 
and the offshore North Pacific, foraging most successfully in spring and summer. The thermal corridors used 
for migration largely coincide with minimum metabolic costs of movement. Future warming may result in loss 
of favorable thermal habitat in the sub‑tropics and a reduction in total habitat area, but allow increased access 
to productive and energetically favorable sub‑arctic ecosystems. Importantly, while thermal considerations suggest 
a loss in habitat area, forage considerations suggest that these losses may be offset by more energetically favorable 
conditions in the habitat that remains. In addition, the energetic favorability of coastal foraging areas may increase 
in future, with decreasing suitability of offshore foraging grounds. Our results clearly show the importance of moving 
beyond temperature when considering climate change impacts on marine species and their movement ecology.

Conclusions Considering energetic seascapes adds essential mechanistic underpinning to projections of habitat 
gain and loss, particularly for highly migratory animals. Overall, improved understanding of mechanisms driving 
migration behavior, physiological constraints, and behavioral plasticity is required to better anticipate how climate 
change will impact pelagic marine ecosystems.
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Introduction
Climate change is driving distribution shifts in mobile 
marine species worldwide [36, 62]. The impact of warm-
ing on species distribution shifts is well documented, as 
animals move poleward or into deeper waters to avoid 
physiological impacts of rising temperatures [19]. How-
ever, species may also move to follow aggregations of 
important prey [41, 76]. These shifts are less well under-
stood but can interact with changes in thermal habitat 
suitability in complex ways. Different rates of species 
movements can lead to new community assemblages 
and altered trophic interactions, with flow-on effects for 
marine foodwebs [53, 69]. As ecosystems are reorganized, 
populations of animals targeted by fisheries can change 
in abundance and spatial availability. These changes can 
impact fishing opportunities and the portfolio of species 
available to fishing fleets, with potential socioeconomic 
repercussions for fishing-dependent communities [67].

Species distribution shifts thus have consequences for 
ecosystem structure, as well as natural resource manage-
ment and human uses of the ocean. Anticipating future 
shifts can help fisheries and ecosystem-based manage-
ment frameworks to be better prepared for ongoing 
climate change, and promote development of “climate-
ready” governance [44]. Mathematical models that can 
predict species distributions from environmental con-
ditions are key tools in this process, and have become 
increasingly popular in the past several decades (e.g., 
[45]). Distribution models can incorporate a range of 
predictors including physical variables (e.g., temperature, 
salinity: e.g., [50]) and biogeochemical variables (chlo-
rophyll, dissolved oxygen: e.g., [21]). Occasionally these 
models include some representation of prey fields (e.g., 
[70]), but incorporation of predator–prey relationships is 
often limited by a lack observations on diet composition 
and prey distributions. Regardless of input predictors, 
species distribution models typically assume that animals 
have a set range of environmental conditions that they 
can tolerate based on their physiology. As a result, if spa-
tial availability of this habitat shifts in response to climate 
forcing, mobile animals will move to follow it. This con-
ceptual model can break down, however, if species move 
for reasons not well captured by simple statistical mod-
els. Such drivers can include reproductive phenology, fol-
lowing specific prey, or avoidance of predation [4, 9]. The 
spatial distribution of species that migrate long distances 
as part of their life cycles can be especially difficult to 
capture in simple statistical models, as these animals may 
have complex movement behaviors driven by cues unre-
lated to contemporaneous conditions.

Marine species have evolved a diverse array of migra-
tion behaviors to maximize reproductive success, main-
tain optimal energetics, enhance growth, and avoid 

predators, among other motivations [4]. Foraging 
migrations can allow predators to exploit spatiotem-
porally variable prey resources, tracking areas of high 
potential energy gain in time and space [2]. Migration 
timing often evolves to place animals in optimal habi-
tat at their anticipated destination, based on historical 
patterns in seasonal prey concentrations, for example 
[9]. Long-distance migrations may involve periodic 
switches between relative resident behaviors within 
favorable habitats, and rapid, energetically costly move-
ments between favorable habitats [57]. As a result of 
these complex drivers, highly migratory animals are not 
evenly or randomly distributed across their geographic 
ranges. Building models to predict the distributions of 
migratory animals, both historically and into the future, 
is therefore particularly challenging [45].

Understanding the mechanisms driving potential cli-
mate impacts on highly migratory species is a press-
ing problem [77]. As climate change leads to shifts in 
the availability of suitable thermal habitat and forag-
ing resources for marine species, historically beneficial 
migration strategies may become maladaptive [65]. Sea-
sonal seascapes of potential energetic costs and gains 
are likely to change, and spatiotemporal mismatches 
between predators and prey may result. Animals may 
need to shift the timing or paths of their migrations to 
effectively adapt, and maintain the energetic benefits 
of historical migratory behaviors [49]. A first step to 
anticipating these changes is to model future shifts in 
locations of optimal energy gain for migratory species, 
and show how these intersect with changes in thermal 
habitat.

Albacore tuna (Thunnus alalunga, albacore hereafter) 
is a highly migratory species distributed globally. They 
support substantial commercial and recreational fisheries 
throughout much of their geographic range [32, 54]. In 
the North Pacific Ocean, immature albacore (~ 2–5 years 
old) can migrate thousands of kilometers seasonally 
between coastal ecosystems in the California Current 
and Kuroshio Current, and the offshore North Pacific 
([24, 54]: Supplementary Fig.  1). Migration behaviors 
can be highly variable among individual albacore, but the 
drivers of these movements are not well understood [57]. 
Juvenile albacore can forage across both epipelagic and 
mesopelagic environments [7, 57]. They are highly flexi-
ble foragers, targeting a variety of prey from small pelagic 
fishes (e.g. anchovy: Engraulis mordax) to mesopelagic 
cephalopods and small crustaceans such as krill [58]. 
Albacore are thus an ideal model species for consider-
ing how highly migratory marine animals may respond to 
climate-driven shifts in foraging environments and ener-
getic seascapes. In this study, we investigate how foraging 
seascapes and thermal habitat may interact to determine 
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the future distribution of juvenile albacore in the North 
Pacific.

We first describe a hybrid correlative-mechanistic 
modeling framework to predict distributions of thermal 
and energetic habitats for juvenile albacore in the North 
Pacific. A combination of laboratory measurements, 
field data, and environmental predictors are leveraged to 
develop a data-driven modeling framework linking ocean 
conditions to energetic seascapes. These models are then 
applied to projections from an ensemble of earth system 
models to quantify how habitat for albacore may change 
into the future. We compare habitat shifts based only on 
temperature to those considering foraging energetics, 
and highlight the most important contributors to uncer-
tainty and error propagation within the modeling frame-
work. We hypothesize that projected changes to albacore 
habitat defined using energetic seascapes will be spatially 
distinct and more heterogeneous from habitat defined 
using only temperature.

Methods
Our study region covered the sub-tropical to sub-
arctic latitudes of the North Pacific, where juvenile 
albacore are known to occur (Supplementary Fig.  1). 
The modeling framework used a combination of field 

observations from archival-tagged albacore, laboratory 
measurements of foraging and energy gain, and a 
suite of environmental predictors to define energetic 
seascapes. Each piece of the framework is described in 
more detail below.

Predictive models (GAMs)
Our framework combined a series of Generalized 
Additive Models (GAMs) to predict energetic costs 
and gains for juvenile albacore across the North Pacific 
Ocean (Table  1, Fig.  1). GAMs were selected due to 
their simplicity, flexibility, and ability to constrain 
partial responses to ensure biological realism. Models 
were constructed in the mcgv package [81] in R 4.4.0 
[64], with relative predictor importance calculated in 
the gam.hp package [46]. GAMs were parameterized 
using either field-collected data (tagged fish) or 
laboratory data (captive fish), and then applied to 
outputs from earth system models.

GAMs 1 and 2 combine to predict the metabolic costs 
associated with each set of environmental conditions, 
while GAMs 3 and 4 combine to estimate the energy 
gained through foraging (Fig. 1). The difference yields a 
measure of net energetic favorability in kJ.

Table 1 Summary of generalized additive models (GAMs) used to predict albacore depth, metabolic movement costs, Heat Increment 
of Feeding, and energy ingested. Predictors and % model deviance explained (%) are shown. Partial response plots are in the 
Supplementary Materials as indicated

1: Muhling et al. [57]

2: Blank et al. [11, 12], Clark et al. [26]

3: Whitlock et al. [79]

Model 
no. 
(Fig. 1)

Model output Biological data source Predictors % Dev. Expl Partial response figure

1a Fish depth (daytime, m) Tagged wild albacore (1) Upper 200 m temperature (°C)
Moon phase (% illuminated)
Depth of 3.5 ml  L−1 dissolved 
oxygen

48.1 Supp. Figure 2

1b Fish depth (nighttime, m) Tagged wild albacore (1) Upper 200 m temperature (°C)
Moon phase (% illuminated)
Depth of 3.5 ml  L−1 dissolved 
oxygen

35.3 Supp. Figure 2

2 Metabolic movement costs (mg 
 O2  kg−1  h−1)

Captive Pacific bluefin tuna (2) Water temperature at depth 
of fish (°C)
Fish swimming speed (body 
lengths  s−1)

87.5 Supp. Figure 3

3 Heat Increment of Feeding (°C 
hour)

Tagged wild albacore (1) Upper 200 m mesozooplankton 
(mg C  m−2)
Estimated fish length (cm)
Day length (hours)

34.0 Supp. Figure 4

4 Energy Ingested (kJ) Captive Pacific bluefin tuna (3) Heat Increment of Feeding (°C 
hour)
Water temperature at depth 
of fish (°C)
Proportion of sardine in diet (%)

84.5 Supp. Figure 5



Page 4 of 16Muhling et al. Movement Ecology           (2025) 13:33 

Estimates of energetic costs
Archival tag records from 28 juvenile albacore were avail-
able through the Albacore Archival Tagging Program [24] 
and the TOPP (Tagging of Pacific Predators) project [13] 
(see Supplemental Methods). We first used these data to 
predict diel depth distributions of albacore, which inform 
the modeled ambient temperatures that they experience. 
Previous work has shown that albacore adjust their verti-
cal distribution depending on environmental conditions 
and moon phase [33]. However, their response to these 
variables is strongly distinct between night and daytime, 
as deeper dives associated with foraging are concentrated 
during daylight hours [57]. Models 1a and 1b thus pre-
dicted the depth of tagged albacore during the day and 
night, using upper 200  m mean water temperature, the 
depth at which dissolved oxygen is 3.5 ml  L−1, and moon 
phase (Table  1, Fig.  1). 3.5  ml   L−1 is approximately the 
level below which epipelagic tunas such as albacore may 
experience physiological stress [17]. Temperature and 
oxygen were obtained from a data-assimilative retrospec-
tive physical ocean simulation integrated with a non-
assimilative biogeochemical/plankton food web model 
[60], while moon phase was obtained from the lunar 
package in R [47].

Potential metabolic costs were calculated using ambi-
ent temperatures at the predicted depths of albacore, 
for daytime and nighttime separately. Model 2 (Table  1, 
Fig.  1) predicts metabolic costs of movement (mg  O2 
 kg−1   h−1) from a combination of water temperature and 

swimming speed (body lengths  s−1), using laboratory 
observations from the closely-related juvenile Pacific 
bluefin tuna (T. orientalis, [11, 12, 26, 56]). Albacore 
swimming speeds were fixed at 1 body length  s−1 during 
the nighttime and 2 body lengths  sec−1 during daytime 
in the model, based on observations of captive tunas and 
diel behavior of tagged albacore [11, 57]. We converted 
metabolic costs (mg  O2  kg−1   h−1) to kJ assuming that 
1 mg  O2 = 13.59 J [31, 42].

Estimates of energy gains
To estimate daily energy intake in tagged albacore, we 
first estimated the Heat Increment of Feeding (HIF: 
model 3). HIF is the increase in visceral temperature due 
to specific dynamic action, or the heat output from the 
metabolic processes required to digest and assimilate a 
meal [20]. HIF has been quantified using observations 
of internal body temperature from surgically implanted 
archival tags in wild and captive bluefin tuna, and 
wild albacore [6, 57, 79, 80]. We calculated HIF as the 
area under the curve between the estimated baseline 
(“fasting”) body temperature and observed body 
temperature from the archival tags at 1-min intervals, 
across each 24-h period for each fish (for details see 
Muhling et  al. [57] and Supplementary Methods). 
Juvenile albacore have diverse and flexible diets including 
finfish (e.g., anchovy, sardine (Sardinops sagax), saury 
Cololabis saira), cephalopods, and crustaceans, and 
their diet composition varies strongly in space and 

CMCC

CNRM

ESM4

IPSL

UK

Oxygen

Temperature

Zooplankton

Metabolic 
Costs 

(Model 2)

Heat Increment of 
Feeding
(Model 3)

kJ Ingested 
(Model 4)

kJ balance 
(Model 4 –
Model 2)

Fish Depth
(Model 1)

Fig. 1 Modeling framework showing five earth system models providing three environmental predictors to inform the four Generalized Additive 
Models shown in Table 1. The 5 earth system models are CMCC‑ESM2 [52], CNRM‑ESM2‑1 [71], GFDL‑ESM4 [28], IPSL‑CM6A‑LR [15] and UKESM1‑0‑LL 
[72]: more details are given in the Supplementary Materials
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time [58]. However, Muhling et  al. [57] showed that 
daily HIF in archival tagged wild albacore is positively 
correlated with model-based estimates of upper 200  m 
mesozooplankton biomass, as a proxy for overall prey 
availability. As juvenile albacore primarily forage during 
the day, seasonal changes in hours of daylight at each 
fish’s location may also influence the energy they can 
ingest. Growth in other tunas has also been observed to 
be highly seasonal (e.g., [22]). Lastly, field observations of 
tagged albacore and bluefin tuna show that HIF is greater 
in larger fish [57, 80]. Model 3 (Table 1, Fig. 1) therefore 
predicts observed HIF in tagged wild albacore using 
upper 200  m mesozooplankton biomass (mg  C   m−2: 
from [60], estimated fish length (cm fork length), and 
day length (hours). Daily fish lengths were estimated 
assuming linear growth between the recorded lengths at 
release and recapture, based on the growth curve in Xu 
et al. [84].

Data from captive fish show that HIF is strongly cor-
related with the caloric value of a meal, but also modu-
lated by diet composition and ambient temperature [79] 
(Supplementary Fig.  5). Model 4 (Table  1, Fig.  1) there-
fore predicts kJ ingested from a combination of HIF, 
water temperature, and estimated proportion of finfish 
prey (e.g., sardine, saury, Cololabis saira) versus mollusk 
or crustacean prey (e.g. Doryteuthis opalescens, Onycho-
teuthisborealijaponica). As we cannot observe the diet 
composition of tagged wild fish, we used a fixed value 
of 70% finfish based on previous diet studies from both 
the nearshore and offshore eastern North Pacific [40, 58]. 
Losses from specific dynamic action (9.2%) and excre-
tion/egestion (27%) were based on Estess et al. [31]. The 
daily kJ balance was thus the estimated kJ ingested minus 
losses from movement costs, specific dynamic action, 
and excretion/egestion. Times and places associated with 
higher/positive kJ balances are assumed to be energeti-
cally favorable, and where excess energy may be available 
for processes such as growth or maturation. While we did 
not directly estimate metabolic costs of somatic mainte-
nance, growth or maturation (e.g., [22, 43]), we assumed 
that any energetic excess available each day would be 
available for these processes.

Estimating daily energetic balance in tagged fish
We examined daily spatial variability in energetic gains, 
losses, and balances in all tagged fish using observations 
of ambient temperatures and HIF applied to models 2 
and 4 (Table  1, Fig.  1). To estimate metabolic costs of 
movement in tagged fish, we calculated horizontal dis-
tance traveled as the great-circle distance between con-
secutive daily positions, smoothed using a 7-day moving 
mean to reduce the effects of geolocation error [16]. 
We calculated vertical distance as half the total distance 

traveled in the vertical plane, assuming that descending 
movements require minimal energy [6]. The total daily 
distance traveled in three dimensions was then converted 
to BL  s−1, using the estimated daily length of each fish. 
Ambient temperature was the mean daily external tem-
perature recorded by the tag for each fish (across all 
depths). We used the length–weight relationship from 
Chen et  al. [23] to convert estimated daily lengths of 
tagged fish to weights, and then converted metabolic 
costs (mg  O2  kg−1   h−1) to kJ using relationships from 
Estess et  al. [31]. HIF was converted into estimated kJ 
ingested using model 4.

Projecting future changes in thermal and energetic 
habitats
Historical and future projections of environmental pre-
dictors were obtained from a suite of earth system mod-
els. We selected five models from the sixth phase of the 
Coupled Model Intercomparison Project (CMIP6) with 
reasonable skill in replicating spatial fields of mesozoo-
plankton biomass [61]: CMCC-ESM2, CNRM-ESM2-1, 
GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-0-LL (Sup-
plementary Table  1 and Supplementary Methods). We 
extracted temperature (SST and upper 200 m mean tem-
perature), depth at which dissolved oxygen is 3.5 ml  L−1, 
and total upper 200  m mesozooplankton biomass from 
each earth system model and applied these to the frame-
work shown in Fig.  1. We then quantified changes in 
metabolic costs, energetic gains, and overall daily energy 
balances between the historical (1971–2000) and future 
(2071–2100) periods under a moderate emissions sce-
nario (SSP2-4.5), for each earth system model. We cal-
culated values based on an albacore of 80 cm fork length 
and 11  kg weight, based on mean sizes of tagged alba-
core and sizes of fish used in laboratory experiments. An 
example of the modeling workflow applied to mean envi-
ronmental fields for the historical period (1971–2000) is 
shown in Supplementary Fig. 6.

Comparing thermal versus energetic habitat shifts
Juvenile albacore habitat is strongly delineated by SST 
[33, 74]. Many climate change impact studies use models 
based on temperature (with or without other predictors) 
to develop scenarios of species distribution shifts, and 
habitat gain or loss (e.g., [37, 50]). However, ecological 
outcomes of species distribution shifts depend not just on 
thermal habitat, but also on metabolic costs, and changes 
in foraging resources. To compare a temperature-
only approach to the more complex energy seascapes 
approach developed here, we first quantified the seasonal 
gain and loss of albacore thermal habitat between the 
historical and future periods using only SST. We used a 
simple thermal envelope approach based on SSTs from 
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the NOAA 0.25° Daily Optimum Interpolation Sea 
Surface Temperature (OISST) product, version 2.1 [39] 
associated with locations of tagged fish (Supplementary 
Figs.  1 and 7). This range (11–22  °C) is consistent with 
previous studies of albacore distribution from both tags 
and fishery-dependent data [33, 57]. SST-based habitat 
gain/loss was defined simply as the change in area  (km2) 
of thermally favorable albacore habitat in the North 
Pacific Ocean between the historical and future periods, 
within each season. We then calculated the change in 
total daily kJ balance resulting from thermal habitat 
shifts. We calculated this metric using area-weighting 
(i.e., we multiplied the kJ balance for all grid cells within 
favorable thermal ranges by the total area in  km2 of 
these grid cells and then divided this value by the total 
area). We also examined future changes in kJ balances 
within consistently favorable thermal habitats across the 
North Pacific, to highlight changes in foraging seascapes 
independent of habitat gain or loss from warming.

Comparing sources of error in the modeling framework
Linking multiple sub-models together can result in sub-
stantial propagation of uncertainty (e.g., [55]). To high-
light the contribution of each predictive model to overall 
uncertainty, we re-ran the modeling framework using 10 
simulations each from the posterior distributions of each 
GAM. This involves extracting the fitted model coef-
ficients and their covariance matrices, simulating new 
coefficients, and then building new models using these 
coefficients. This resulted in an ensemble of 10,000 model 
predictions (10 × 10 × 10 × 10) per earth system model. 
We compared projections of future kJ balance anomalies 
for two areas of interest showing relatively strong future 
change. By comparing the relative contribution of each 
biological model to overall uncertainty, we can highlight 
areas where additional observations, or better knowledge 
of key processes, could reduce uncertainty in future.

Results
Archival tagged albacore showed extensive seasonal 
migrations across the North Pacific, ranging thousands of 
kilometers from the California Current ecosystem to the 
Kuroshio Current system (Fig. 2).

Fish were generally concentrated along the North 
American west coast during summer. Some indi-
viduals moved offshore in fall, spending winter and 
spring in the central North Pacific before moving east-
wards back towards the California Current system 
(Fig.  2). Albacore were estimated to consume a median 
of 356.1  kJ   kg−1   day−1, with higher values in spring 
(417.4 ± 4.71) and summer (449.5 ± 5.69) versus fall 
(278.9 ± 4.66) and winter (313.6 ± 3.90). When metabolic 
costs of movement were accounted for (Table 1, Fig. 1), 

estimated daily kJ balances were mostly > 0, with the 
highest median values in spring (2606.9 ± 32.5 kJ) and the 
lowest values in fall (1301.8 ± 29.1 kJ) (Fig. 2).

To show how projected changes in energetic seascapes 
could be experienced along observed albacore movement 
paths, we calculated the change in kJ balance between the 
historical (1971–2000) and future (2071–2100) periods at 
the daily locations of three tagged albacore with relatively 
long tag deployments (Fig. 3).

If these fish followed the exact same routes in both 
time periods, changes in environmental conditions would 
result in relatively higher kJ balances in the northern 
Transition Zone region and the northern California Cur-
rent. Energetic conditions became generally less favora-
ble in the offshore North Pacific south of ~ 35°N (mean 
decrease in daily kJ balance of between 19.9 and 52.9 kJ 
across the three fish). Across the deployment period 
for each fish however (660–721 days), the mean daily kJ 
balance did not change substantially. It increased from 
1738.3 to 1759.5  kJ daily (21.2  kJ change) between the 
historical and future time periods at locations occupied 
by fish 1090251, and remained nearly the same for fish 
1090269 and 2393 (decreasing from 1604.2 to 1603.4, and 
1671.0 to 1667.9, a change of 0.8 and 3.1 kJ respectively).

Broadening application of the modeling framework 
to the whole North Pacific highlighted substantial 
seasonality in predicted kJ balance averaged across the 
historical (1971–2000) earth system model ensemble 
(Fig. 4).

The highest kJ balance values were along the North 
American west coast and in the western-central 
North Pacific in spring and summer, consistent with 
predictions from individual tagged fish (Fig.  2, Fig.  3). 
kJ balances were predicted to be lowest in winter and 
fall between 160 and 140°W. Future Projected future kJ 
balances showed reasonably similar spatial patterns to 
the historical period in winter and fall, with some small 
increases in the western North Pacific near Japan (Fig. 4). 
However, future kJ balances in summer were more 
distinct from the historical period, primarily as a result 
of shifting thermal habitats. With increasing SST, the 
predicted ideal summer habitat moved northwards into 
the western Gulf of Alaska and Bering Sea. This poleward 
shift increased availability of productive subarctic areas 
with potentially high kJ balances (Fig. 4).

Comparison of predicted energetic costs and 
gains between the historical and future time periods 
highlighted considerable spatial heterogeneity. Warming 
temperatures drove increases in metabolic costs in 
the southern portion of albacore thermal habitat in 
winter, spring, and fall, with decreasing costs in the 
northern part of the species range (Fig. 5, Supplementary 
Figs. 8–12).
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In contrast, predictions of kJ ingested showed 
stronger longitudinal patterns, with increases in 
potential energy gain in the western North Pacific in 
winter and spring, and slight decreases elsewhere. In 
sum, these changes resulted in potential increases in 
kJ balance at the northern edge of favorable albacore 
habitat and decreases in the south. However, the 

overall negative changes in predicted energy gains and 
kJ balance did not account for new foraging habitat 
becoming available as much of the subarctic North 
Pacific warms to > 11 °C during summer (Fig. 5).

Future warming resulted in an overall loss of favorable 
thermal habitat for albacore in the North Pacific in all 
seasons (Fig. 6).

Fig. 2 A Seasonal histograms of daily kJ ingested per kg body weight for all tagged juvenile albacore predicted using model 4 (Fig. 1, Table 1). B 
Seasonal histograms of daily kJ balance for all tagged juvenile albacore predicted using models 2 and 4 (Fig. 1, Table 1). The vertical dashed lines 
show a balance of zero. C Estimated daily locations of all tagged juvenile albacore
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Although there was considerable variability across 
earth system models, all five projected a smaller extent 
of thermal habitat in future, with mean losses ranging 
from 1,612,039 (± 236,375.5)   km2 in winter, or an 8.8% 
loss of habitat compared to the historical period, to 
2,999,758 (± 1,132,289.6)   km2 in summer, corresponding 

to a 19.4% loss of habitat (also see Fig. 5, Supplementary 
Fig.  13). In contrast, mean daily kJ balance within 
thermally favorable habitat was projected to decrease 
in fall, and increase in spring and summer. The five 
earth system models disagreed on the direction of 
change in the kJ balance in all seasons except fall, with 

Fig. 3 Left: Daily locations and observed kJ balances (7‑day running means) along the tracks of three tagged albacore. Right: projected change 
in kJ balances along the same tracks using 7‑day mean kJ balances from historical (1971–2000) versus future (2071–2100) environmental 
conditions across an ensemble of five earth system models, and observed daily swimming speeds. Tag location data were available for fish 1090251 
from September 2nd 2011 to August 23rd 2013, for fish 1090269 from September 3rd 2011 to June 24th 2013, and for fish 2393 from July 30th 2004 
to May 26th 2006
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three models (CMCC-ESM2, CNRM-ESM2-1, IPSL-
CM6A-LR) showing a slight increase in winter and three 
(CMCC-ESM2, GFDL-ESM4, UKESM1-0-LL) showing a 
moderate increase during spring and summer (Fig. 6).

This disagreement was partially related to spatial 
differences in projected environmental fields across earth 
system models. Each model was broadly consistent in 
showing increased kJ balances in the north and decreases 
in the south in winter, spring, and fall (Supplementary 

Fig. 4 Historical (1971–2000) and future (2071–2100) predicted kJ balances averaged across an ensemble of five earth system models by season. 
Areas where SST is outside albacore favorable thermal habitat (11–22 °C) are masked. The blue and red contours show the 11 and 22 °C isotherms, 
respectively, for the historical period, to highlight projected poleward shifts in favorable thermal habitat in future
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Fig. 13). However, the spatial extent and location of these 
areas of change differed across earth system models. In 
contrast, models showed more disagreement in projected 
patterns during summer, ranging from a broad increase 
in future kJ balances (CMCC-ESM2) to a broad decrease 
(GFDL-ESM4, UKESM1-0-LL) (Supplementary Fig. 13).

This substantial disagreement across earth system 
models was also evident when we re-ran the modeling 
framework using 10 simulations from each of the four 
GAMs in Table  1. Although each GAM contributed 
considerable uncertainty, the largest source of spread 
in projections of future change was the choice of earth 
system model (Supplementary Fig.  14). The uncertainty 
within projections from each earth system model 
was also substantial in some areas. The 5th and 95th 
percentile of future anomalies in kJ balance from the 
10 simulations of each GAM overlapped with zero 
at mid-latitudes in all seasons for the UKESM1-0-LL 
model (shown as an example), particularly in summer 

(Supplementary Fig.  15). However, the decrease in 
projected kJ balance in the southern part of the suitable 
temperature range for albacore in winter, spring, and 
fall was robust to uncertainty from the GAMs, as was 
the future increase in kJ balance in the northern part 
of the suitable temperature range in all seasons except 
fall. Thus, while the combination of multiple GAMs and 
multiple earth system models contributed substantial 
uncertainty, the broad pattern of an increase in kJ balance 
in the north, and a decrease in the south, was relatively 
consistent.

Discussion
Highly migratory species such as tunas move between 
areas of optimal foraging and energy balance to 
maximize growth and reproduction output. In 
particular, movements between foraging areas can 
allow mobile animals to increase their energy intake by 
tracking seasonal concentrations of prey [2]. Climate 

Fig. 5 Projected changes to daily metabolic costs of movement (left, mg  O2 kg‑1 h‑1), kJ ingested (center), and kJ balance (right). Areas where SST 
is outside albacore favorable thermal habitat (11–22 °C) are masked. The red lines show the historical and future locations of the 22 °C isotherm, 
thus areas outlined in red show where future warming results in loss of albacore favorable thermal habitat. The blue lines show the historical 
and future locations of the 11 °C isotherm, thus areas outlined in blue show where future warming results in gain of albacore favorable thermal 
habitat. Changes in predicted metabolic rates, kJ ingested and the change in kJ balance are indicated as colored shading in the areas where habitat 
was thermally suitable in both the past and future time periods
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change is driving shifts in the distribution, abundance, 
and phenology of foraging areas, as well as altering 
environmental conditions along migratory paths [29]. 
As a result, historical migratory strategies may no longer 
result in favorable balances of energetic costs and gains 
[49]. Here, we examine changing energetic seascapes 
for juvenile albacore in the North Pacific Ocean. We 
show that albacore move within thermally defined 
corridors to access productive seasonal foraging grounds. 
Climate-driven warming will shift habitats with suitable 
temperature characteristics for albacore northwards 
(Fig.  4). Within these thermally favorable habitats, we 
show that more southern and offshore areas may become 
less energetically profitable, while northern and coastal 
areas may become more profitable (Fig. 5). Importantly, 
increased access to productive sub-arctic areas may offset 
the loss of oligotrophic sub-tropical habitats (Fig. 6).

Migration ecology
Juvenile albacore are distributed across much of the 
North Pacific, occupying habitats spanning highly 

productive upwelling regions to the oligotrophic sub-
tropical gyre [7, 54, 57]. Their broad temperature 
tolerances result in a large potential swath of favorable 
thermal habitat [33]. However, albacore are clearly 
not randomly distributed within waters of suitable 
temperature, and they can expend considerable energy 
migrating long distances between foraging areas each 
year [57]. Our results suggest that their movement 
strategies enable albacore to access productive foraging 
grounds in disparate ecosystems, and that their migration 
timing tends to place them in favorable foraging areas 
at strategic times. For example, plankton biomass in 
the California Current is at a maximum in spring and 
summer [35], while the strength of the offshore North 
Pacific Transition Zone chlorophyll front peaks in winter 
and spring [14]. Tagging and fisheries data show that 
albacore aggregate in these ecosystems within these 
highly productive seasons [33, 57].

Other migratory pelagic species in the North Pacific 
also forage in these productive hotspots. Juvenile Pacific 
bluefin tuna migrate from the western tropical Pacific to 

Fig. 6 Projected seasonal albacore habitat gain and loss from two methods. Left: change (2071–2100 versus 1971–2000) in thermally favorable 
habitat defined as 11 °C < SST < 22 °C. Percentage change in habitat area  (km2) compared to the historical period is shown. Right: change in mean 
daily kJ balance within thermally favorable habitats. Uncertainty bounds correspond to a 95% confidence interval across the 5 different earth 
system models
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the California Current System to forage as juveniles [34]. 
Blue whales (Balaenoptera musculus) migrate latitudi-
nally between Central America and the Gulf of Alaska, 
and may time their movements to coincide with times 
of high productivity in the California Current System [1, 
13]. Northern elephant seals (Mirounga angustirostris) 
migrate seasonally between breeding areas along the 
North American west coast and foraging areas as dis-
tant as the western Aleutian Islands [48]. While these top 
predators use different migration strategies and forage on 
different prey [7, 68], they consistently visit key foraging 
areas such as the California Current and the North Pacific 
Transition Zone [37]. Similar to results shown here for 
albacore (e.g., Fig.  3), these long-distance migrants may 
cross large expanses of less productive habitat to reach 
seasonal foraging grounds [13]. The precise cues driving 
routes and timing in migratory animals remain incom-
pletely understood. However, if these behaviors evolved 
based on historical ocean conditions and seasonal cycles, 
they may become less effective as climate change shifts 
the mean state and phenology of ocean ecosystems.

Climate change impacts
Over the coming decades, climate change will push many 
marine ecosystems into novel states [73]. Key foraging 
habitats may experience shifts in productivity, seasonal 
cycles, and prey composition [63]. If, for example, ocean 
conditions at the start and end points of historical migra-
tion routes change at different rates, then migration cues 
and movement patterns that were historically energeti-
cally beneficial may no longer be so [65]. The ability of 
migratory populations to keep pace with climate change 
may depend on whether they can modify their behavior 
to maintain their energetic needs, either through behav-
ioral plasticity or genetic adaptation [5].

Our results show that climate warming in the North 
Pacific is likely to result in expanded availability of habitat 
for albacore in the Gulf of Alaska, Bering Sea, and other 
sub-arctic ecosystems (Fig.  4). These are highly produc-
tive systems during the boreal spring and summer [51], 
and so represent a potentially valuable foraging resource. 
A key finding is that the potential energetic gains avail-
able from enhanced access to the productive sub-arctic 
may offset losses from the sub-tropics, even with a net 
loss of habitat area (Fig.  6). Thus, it is clear that exam-
ining species distributions using temperature alone does 
not fully capture the mechanisms driving habitat use. By 
accounting for the potential biomass of prey contained 
within areas that become newly favorable or newly unfa-
vorable in future, we can better anticipate both the physi-
ological and ecological consequences of climate change.

Juvenile albacore exhibit multiple movement patterns 
in the North Pacific, ranging from highly migratory to 

largely resident [24, 54, 57], and the persistence of these 
behavior types at a population level varies through time 
[32]. Albacore may also shift their distributions pole-
wards during unusually warm conditions [25]. This 
plasticity in habitat use in response to changing ocean 
conditions has also been observed in other highly migra-
tory pelagic fishes, such as Atlantic bluefin tuna (T. 
thynnus: [41]). Thus even as climate change drives spa-
tiotemporal shifts in North Pacific pelagic habitats and 
foraging grounds, albacore may have the ability to behav-
iorally adapt.

Modeling implications
Previous studies modeling climate change impacts on 
pelagic predators have used a variety of environmen-
tal variables to delineate favorable conditions. Some use 
only temperature (e.g., [66]) or other physical predictors 
(e.g., temperature, salinity, mixed layer depth: [50, 86]). 
Others include biogeochemical predictors such as chlo-
rophyll, primary productivity, phytoplankton biomass, or 
dissolved oxygen (e.g., [21, 30]). Theoretically, distribu-
tion models including biogeochemistry may define forag-
ing habitats more effectively than physics-only models. 
However, it may be difficult for purely statistical frame-
works to capture habitat use in species that travel large 
distances across unfavorable habitats to reach favorable 
foraging or breeding areas. The characteristics of “favora-
ble” habitat defined statistically can be highly variable, 
depending on whether an animal is migrating, foraging, 
or reproducing. Daily kJ balances calculated for tagged 
albacore in this study show that they can undergo days to 
weeks of relatively unfavorable conditions while migrat-
ing to areas that are energetically more favorable.

More complicated mechanistic ecosystem models are 
also available for projecting distributions of pelagic fishes 
based on changes to physical conditions and prey fields 
(e.g., [27, 59]). As projections from ecosystem mod-
els including higher trophic levels become more avail-
able through programs such as FishMIP [10], there are 
increasing opportunities to move beyond simple correla-
tive distribution models. Existing detailed bioenerget-
ics models for migratory species (e.g., [22]) could also 
be made more environmentally explicit, and applied to 
projected environmental fields or multispecies frame-
works. However, all such models must include accurate 
parameterizations of many complex processes in order to 
provide realistic outputs. As climate change increasingly 
results in novel ecosystem conditions, achieving accu-
rate parameterization of ecosystem models, skill across 
trophic levels, and stationarity in species-environment 
relationships will be particularly challenging. There is 
thus a clear need to better understand the mechanisms 
underlying divergent species’ responses to changing 



Page 13 of 16Muhling et al. Movement Ecology           (2025) 13:33  

conditions [18]. In particular, our results emphasize the 
importance of direct observations of animals, via labora-
tory and field studies of metabolism, cost of locomotion, 
and energetics. When combined with spatiotemporal 
locations and foraging data, these data provide important 
new information for parameterizing mechanistic climate 
impact models.

Societal impacts
A key motivation for studies of distribution shifts in 
tunas is to develop scenarios of ecological, economic and 
social impacts resulting from changing fishing opportu-
nities (e.g., [8]). Over the past several decades, fisheries 
for juvenile albacore in the eastern North Pacific have 
experienced large shifts in fishing grounds corresponding 
to shifts in albacore distribution [32]. Tagging data show 
that albacore can move rapidly between the exclusive 
economic zones of the US, Canada, Mexico, and Japan, 
as well as the high seas, and the proportion of catch in 
each of these areas has been highly variable historically 
[32, 57]. Our results show potential future shifts in for-
aging seascapes for albacore in the North Pacific, with 
coastal regions potentially becoming more favorable than 
the high seas. Model outputs can thus inform develop-
ment of potential future scenarios, and guide equitable 
decision-making on allocations between evolving and 
declining fisheries. However, our analyses highlight that 
variability across earth system model projections is a 
large source of uncertainty when developing modeling 
frameworks, and may preclude the development of sce-
narios at high spatiotemporal resolution. In addition, it 
is difficult to anticipate how fishing fleets and communi-
ties will respond in the context of complex international 
management agreements, and variable responses of indi-
vidual vessels and fleets. In the US, the fishing fleet that 
targets juvenile albacore is heterogeneous, composed of 
different-sized vessels with different characteristics, fish-
ing strategies, and fishery portfolios [32]. Each vessel 
thus has a differing ability to follow shifting distributions 
of fish, or to switch to targeting other species based on 
markets and availability. Future studies of climate change 
impacts on North Pacific albacore will need to more fully 
incorporate human dimensions and socioeconomic sce-
narios in order to provide actionable advice to natural 
resource managers.

Knowledge gaps and future work
Our study framework and results highlighted several 
important knowledge gaps, and opportunities for future 
research. A key uncertainty was the lack of laboratory 
data on albacore, as they are difficult to keep and study in 
captivity. While Pacific bluefin tuna are closely related to 
albacore and have similar thermal preferences, they have 

different migratory behaviors and grow to a much larger 
size. A lack of physiological observations is a common 
issue when developing mechanistic ecological models, 
particularly for larger species or those which do not sur-
vive captivity. As in this study, validating the realism of 
models using a wide variety of field and laboratory obser-
vations may be the best approach for addressing uncer-
tainty in physiological responses.

As the cues driving migratory behavior in albacore are 
incompletely understood, it is difficult to anticipate how 
they will respond to longer term climate change. Migra-
tory behaviors can be learned, innate, or a combination 
of the two [3]. Climate change may impact environ-
mental migration cues (e.g., temperature) directly, while 
geographic cues (e.g., magnetic fields) stay within his-
torical bounds [49]. The short time-period (2003–2013) 
covered by our tagging data also limited our ability to 
ground-truth our projections using historical variability 
(e.g., marine heatwaves, [78]). As our tags were archival, 
we also have very little information on finer-scale move-
ments. We thus used fixed diel swimming speeds in our 
framework, which will highly oversimplify energetic 
costs of movement. Newer electronic tags with more 
physiological sensors may offer opportunities to further 
develop mechanistic models in future.

While the use of multiple GAMs contributed substan-
tial uncertainty to our modeling framework, the largest 
source of uncertainty was divergence across earth sys-
tem models. Including an ensemble of climate models is 
essential for capturing and communicating this uncer-
tainty. Mesozooplankton biomass projections vary widely 
across earth system models, as a result of different bio-
geochemical sub-models and a lack of observations to 
parameterize and validate them [61]. Due to the size of 
our study domain, we also did not downscale the earth 
system models. Finer-scale processes in coastal upwelling 
systems such as the California Current system were thus 
likely not well resolved [63]. For example, coastal temper-
ature fronts are known to be important for albacore for-
aging success [75, 85], but these features are not captured 
by coarse-resolution models. Sub-surface prey biomass 
on sub-tropical foraging grounds is also not well captured 
in many biogeochemical models [83]. Using mesozoo-
plankton biomass to estimate albacore prey will not cap-
ture changes in forage composition, nutritional quality, 
or broader foodweb structure, or interacting effects such 
as species-specific temperature or oxygen tolerances [38, 
82]. While substantial work to improve biogeochemi-
cal models continues, our results are best interpreted at 
broad spatiotemporal scales, with close attention paid to 
where earth system models diverge, and uncertainty is 
greatest.
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In addition, predators show flexible foraging behavior 
in response to prey availability and ocean conditions. 
Albacore show different vertical movement patterns in 
coastal versus offshore waters as they target prey layers 
at different depths [7, 57]. They can also rapidly switch 
between prey types (e.g., finfish versus cephalopods) 
in response to availability [58]. This type of adaptive 
foraging ecology is difficult to capture in models. 
However, assuming fixed trophic connections may 
underestimate the potential of predators to adapt to 
future change.

Conclusions
Overall, we show that juvenile albacore move substan-
tial distances within favorable thermal habitat to forage 
in seasonally productive ecosystems in the North Pacific. 
Future climate change may result in loss of favorable 
thermal habitats in the sub-tropics, but allow increased 
access to productive sub-arctic ecosystems during sum-
mer. Coastal ecosystems may become more energeti-
cally favorable in future, while the offshore North Pacific 
becomes less favorable, largely as a result of lower poten-
tial energetic gains from foraging. The largest contribu-
tor to uncertainty within our framework was variability 
among earth system models, which highlights the impor-
tance of using multi-model ensembles for climate change 
impact studies. Despite the uncertainty introduced by 
including biogeochemistry in our framework, we clearly 
show the importance of moving beyond temperature and 
considering energetics when assessing climate change 
impacts on marine ecosystems. Further work is needed 
to better understand how highly migratory animals use 
movement behaviors to optimize energetic gains, and 
how climate change will influence foraging seascapes and 
energetic tradeoffs.
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