
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

DeNicola et al. Movement Ecology           (2025) 13:34 
https://doi.org/10.1186/s40462-025-00554-5

Movement Ecology

*Correspondence:
Vickie DeNicola
vickie.denicola@fieldengine.com

Full list of author information is available at the end of the article

Abstract
Background  An abundance of white-tailed deer (Odocoileus virginianus) in suburban communities can lead 
to problems such as increased deer-vehicle collisions (DVCs), tick-borne illnesses, and forest degradation. Deer 
populations can be managed using traditional lethal methods; however, these methods are often impractical, 
ineffective, or socially unacceptable, prompting interest in management alternatives, including fertility control. 
Some fertility control methods (such as vasectomy, tubal ligation, and porcine zona pellucida-based vaccines) cause 
unsuccessfully bred females to experience multiple estrous cycles, potentially altering their movement behavior and 
fine-scale activity. Such changes could increase the risk of DVCs and negatively affect the physical condition of the 
animals. However, the effects of such treatments on animal behavior remain poorly understood, specifically in terms 
of breeding-related movements and energetics. This study aimed to evaluate the behavioral impacts of a large-scale 
vasectomy program on white-tailed deer.

Methods  We conducted a 2-year study using a treatment/control design and analyzed biologging data of white-
tailed deer at two sites near New York City, USA. We used a moving-window approach to assess the effects of a 
large-scale vasectomy program on the seasonal changes in movement behavior (home-range size, distance traveled, 
diffusion, and excursivity) and fine-scale activity (time spent in low-activity states and the daily number of state 
transitions).

Results  There were no biologically significant differences in movement behavior or activity trends in either sex 
between the treatment and control groups. Females in both groups exhibited similar trends in all movement 
metrics, but females at the treatment site tended to switch between activity states more often in winter. Males at 
the treatment site expanded their space use less than control males during peak breeding season but otherwise 
exhibited similar movement behavior trends. Mortality rates and causes were similar at both sites.

Conclusions  The vasectomy program, despite causing extra estrus periods in unsuccessfully bred females, is unlikely 
to cause appreciable behavioral changes that could exacerbate management-related issues at the time scales 
investigated. Fertility control methods inducing extra estrus periods could be implemented alone or alongside other 
strategies to reduce abundant deer populations with minimal impact on behavior.
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Background
Over the last century, deer populations have expanded 
in suburban and urban areas across North America, 
Europe, and Asia, leading to a range of human-deer 
conflicts and ecosystem impacts [1]. Among the most 
pressing concerns are deer-vehicle collisions (DVCs) [2], 
damage to agricultural and residential landscapes [3], 
overbrowsing of native vegetation [4, 5], and the spread 
of tick-borne diseases [6]. Local reductions in deer den-
sities, achieved through lethal methods (e.g., controlled 
hunting and culling), translocation, and fertility control, 
have been shown to reduce these conflicts [5, 7, 8]. While 
lethal methods remain the most common approach, they 
are often impractical, ineffective, or socially unacceptable 
in densely populated suburban and urban environments, 
leading to increased interest in non-lethal alternatives 
like fertility control [9].

Fertility control methods include surgical (e.g., vasec-
tomy, ovariectomy, and tubal ligation) and non-surgical 
(e.g., immunocontraceptive vaccines and hormonal 
methods) options [10]. These approaches aim to reduce 
or eliminate reproductive output, and over time, lower 
population densities. These techniques have shown suc-
cess in cases where reproduction is reduced to near zero, 
and immigration is minimal [11, 12]. However, some 
fertility control techniques prevent conception without 
halting estrous cycles in unbred females, leading to con-
cerns that this behavioral change could alter movement 
patterns and increase human-wildlife conflicts. In par-
ticular, treatments such as vasectomy, tubal ligation, and 
porcine zona pellucida (PZP) immunocontraceptive vac-
cines result in repeated estrous cycling in unsuccessfully 
bred females, which may prolong movement-intensive 
breeding behaviors and elevate the risk of DVCs [13–15]. 
Several studies suggest that DVC rates increase during 
the breeding season due to increased movement and 
activity [16, 17]. Concerns about movement change due 
to repeated estrous cycling are frequently cited in debates 
over the suitability of fertility control as a management 
tool but have rarely been tested in free-ranging popula-
tions [10, 13–15].

Breeding-related movement behavior in male and 
female white-tailed deer (Odocoileus virginianus Zim-
merman; hereafter, deer) has been studied extensively 
[18–22]. The breeding season results in the first annual 
estrus period in females and peak testosterone levels in 
males [23, 24]. Female deer generally show increased 
movement and activity during the breeding season, 
with peak activity occurring around conception [22]. 
Excursive behavior may increase a female’s chances of 

encountering a male during receptivity, especially in pop-
ulations with low densities or female-biased sex ratios 
[18, 22]. Male deer exhibit distinct movement patterns 
during the breeding season, characterized by increased 
activity and larger home ranges [20, 21]. Females who fail 
to conceive due to fertility control measures may have 
repeated estrous cycles (∼ 1–2 days every ∼ 25 days), 
potentially into late winter [13–15]. These additional 
cycles may lead to extended breeding activity and move-
ment [14, 15], which, in turn, may increase the animals’ 
energetic expenditures and the risk of DVCs [16, 17, 
25]. Evaluating the overall effectiveness and applicabil-
ity of fertility control treatments thus requires under-
standing the treatment’s side effects on animal behavior 
[10]. This research aimed to address these concerns by 
quantitatively assessing the implications of a large-scale 
vasectomy program that induces multi-estrous cycling 
in female deer through a semi-experimental, multi-scale, 
treatment-control study.

Between 2016 and 2024, New York City Parks and Rec-
reation conducted an in-situ research program at Staten 
Island, New York, USA, to assess the potential effective-
ness of a large-scale male vasectomy program in reduc-
ing the local deer population [26]. This study aimed to 
assess the behavioral impacts of this fertility control ini-
tiative, providing critical insights into its effects on move-
ment behavior and activity in an urban/suburban deer 
population. Between 2021 and 2023, we collected Global 
Positioning System (GPS) and accelerometry data from 
biologging devices on male and female deer at the treat-
ment site and compared them with the data of untreated 
males and females at a nearby control site. We examined 
the movement and activity patterns over time, focus-
ing on trends during the expected period of additional 
estrous cycles (January–April; see Additional file 1: Table 
S1). We hypothesized that females at both sites would 
exhibit increased movement and activity during estrus 
periods, but that male movement and activity would peak 
only during the November–December breeding season, 
regardless of treatment status due to naturally declining 
testosterone levels [23]. By quantifying these patterns, 
this study provides much-needed empirical evidence 
on the behavioral impacts of fertility control, inform-
ing future management decisions in suburban deer 
populations.

Keywords  Accelerometer, Contraception, Ctmm, Fertility control, GPS, Odocoileus Sp, Population management, 
Suburban wildlife
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Methods
Study areas
Treatment site—Staten Island, New York, USA
Staten Island (SI) is a borough of New York City (NYC), 
New York, USA (40.598237, − 74.144319; Fig.  1A) that 
covers an area of ∼ 155 km2, ∼ 35% of which is consid-
ered deer habitat (e.g., grassland, deciduous hardwood 
forest, and marsh areas greater than ∼ 2  ha) [26]. It is 
the least populated of the five boroughs of NYC (2022 
human population: 495,925) and contains nearly 5,000 ha 
of protected parkland. The remaining area is a mix of 
single- and multi-family housing development, commer-
cial development, other open spaces (e.g., golf courses 
and cemeteries), and roads. Over 97% of antlered SI 
males have been vasectomized, and hunting is prohibited 
within NYC limits [26]. We focused our capture efforts 
on The Greenbelt and Freshkills areas of SI (bounded 
area in Fig.  1A), specifically targeting these areas to 
closely resemble the contiguous open space at the control 
site. The area used by the individuals in this study encom-
passed 45.7 km2 of open spaces and developed areas.

Control site—Rockefeller State Park Preserve, Pleasantville, 
New York, USA
The Rockefeller State Park Preserve (RSPP; 41.107083, 
− 73.839131; Fig.  1B) is located in Pleasantville, New 
York, USA, in Westchester County. This site is ∼ 50  km 
north of the treatment site. The preserve encompasses 
7.2 km2 of deciduous hardwood forests, agricultural pas-
tures, grasslands, and aquatic habitats (J. DiPaola; per-
sonal communication; 13 February 2023). The forested 
area is dominated by several species of oak (Quercus 
spp.), tulip poplar (Liriodendron tulipifera), maple (Acer 
spp.), and American beech (Fagus grandifolia). Several 
water bodies are in the preserve, including the centrally 
located 7.7 ha Swan Lake and numerous interconnected 

streams. An ∼ 88.5 km network of carriage roads serves 
as trails for both pedestrian and equestrian traffic. Sev-
eral roadways run adjacent to and intersect portions 
of the preserve, with certain boundaries of the park 
demarked by fences 2.5 m or higher. Many of these fences 
lack consistent maintenance and feature breaches that 
facilitate wildlife passage. The preserve is surrounded 
by ∼ 8.1 km2 of residential property with lot sizes vary-
ing from 0.4 to 5 ha. During the first year (2021–2022), 
deer hunting was allowed in the eastern section of the 
preserve (east of Route 448). Between September and 
December 2022, several hunters were also active in small 
areas on the northwestern side of the park. None of the 
study deer and only two non-study animals were har-
vested during the study period. We focused our capture 
efforts in areas where hunting was restricted. The area 
used by the individual deer in this study comprised 14.1 
km2 of open spaces and developed areas.

At both study sites, peak breeding normally occurred 
in mid-November, with the breeding season starting in 
late October and ending in late December [23].

Capture and data collection
We aimed to collect the data from a minimum of 10 adult 
males and 20 adult females at each study site during each 
of the two study years, and we captured additional indi-
viduals when mortalities occurred. We immobilized adult 
deer using dart projectors [27] and the capture protocol 
outlined in DeNicola & DeNicola [12]. All captured deer 
were fitted with biologging devices (Vertex Plus with a 
32  Hz Advanced 3-axis acceleration sensor; Vectronic 
Aerospace GmbH, Berlin, Germany) that contained GPS 
loggers, triaxial accelerometers, and an automatic drop-
off mechanism. We estimated the weight based on chest 
girth measurements and age based on tooth wear [28]. 
No fawns or yearlings (deer younger than two years old) 

Fig. 1  Maps of treatment and control study areas. A Map of the treatment study area in Staten Island and its location in New York State and the northeast-
ern United States. B Map of the control study area in Rockefeller State Park Preserve in the context of New York State and the northeastern United States. 
The control site is located ∼ 50 km north of the treatment site
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were handled to better reflect the expected age struc-
ture in a high-treatment vasectomy program, where the 
population would primarily consist of adult individuals if 
reproduction were reduced or eliminated. While approx-
imate ages were estimated, all individuals were classified 
as adults due to the inherent imprecision of live aging 
in deer. All capture and handling procedures were con-
ducted in accordance with the New York Department of 
Environmental Conservation Scientific Collection Per-
mit (LCP #2100). All male deer included in the study at 
the treatment site underwent vasectomies during the 
previous field seasons, and ∼ 97% of antlered male deer 
at the treatment site were vasectomized [26]. Population 
dynamics are beyond the scope of this study.

We scheduled the GPS devices to obtain 1-h fixes. To 
extend the battery life, only six daily GPS fixes (one every 
4-h) were transmitted via satellites. The remaining 18 
daily fixes were stored in the collar until retrieval. Tri-
axial accelerometers were used to record data at 32  Hz 
with a sensitivity of ±4  g (surge (X-axis), sway (Y-axis), 
and heave (Z-axis)). We defined the behavioral periods as 
pre-breeding (22 September–18 October), breeding (20 
October–4 January), peak breeding (10 November–30 
November), and post-breeding/extra estrus periods (5 
January–1 April) [23]. During Year 1 (August–May 2022), 
collars were removed on 30 May 2022 to ensure device 
refurbishment for Year 2 deployment. In Year 2 (August 
2022 to June 2023), the collars were removed on 20 June 
2023. Data were collected between the device deploy-
ment and remote drop-off or animal death.

GPS data analyses
We preprocessed the raw GPS data after download-
ing from MoveBank (MoveBank Study ID: 1879977576; 
Additional file 5: Section S1) and then estimated the 
changes in movement over time for each animal using 
the continuous-time speed and distance (CTSD) method 
[29]. This method is based on the continuous-time move-
ment modeling workflow via the ctmm package (1.2.0) 
[30] in R (4.4.0) [31]. To quantify the changes in move-
ment behavior, we modeled each animal’s telemetry 
data using a moving-window approach [32] (also see the 
empirical example by [33], in which each window had a 
size and slide of seven and three days, respectively, result-
ing in overlapping 7-day estimates. We selected a 7-day 
window to identify fine-scale temporal variations in 
movement behavior (e.g., peak breeding season, proes-
trus/estrus) [14, 23] while maintaining sufficiently abun-
dant range crossings (e.g., frequent movements across 
the boundaries of the estimated home range to provide 
enough data points to define home range reliably) to pro-
duce reasonable estimates of home-range (HR) size [34]. 
Because deer collared after late August were not tracked 
during summer (Additional file 5: Figure S1B), the dates 

for each window were converted to the number of days 
after 1 August to ensure continuity between December 
and January of the following year (Additional file 5: Fig-
ure S1C).

We fit a movement model to each 7-day subset of 
telemetry data using the ctmm.select() function to deter-
mine the best-fitting model as a function of sampling 
frequency and the degree of autocorrelation in the track-
ing data [30]. From each model, we extracted the ani-
mal’s 7-day HR size and, when possible, the average daily 
anomalous diffusion, average daily distance traveled (i.e., 
average speed), and excursivity. Diffusion was calculated 
as the asymptote of the time-dependent expected square 
displacement over a finite period of time, which results 
in superdiffusion for time lags below an animal’s forag-
ing timescale, linear diffusion for time lags greater than 
the foraging timescale but smaller than the range-cross-
ing timescale, and asymptotic diffusion for time periods 
longer than the range-crossing timescale [35]. Excursiv-
ity was determined by calculating the daily mean quantile 
of each animal’s utilization distribution [36], which we 
estimated using Autocorrelated Kernel Density Estima-
tion [37] on the full telemetry dataset of each individual 
(keeping the two years separate; see Additional file 6: Fig-
ure S1).

Modeling movement behavior
We estimated the differences in movement behavior over 
time between sexes at each site using the mgcv pack-
age [38] in R software to fit four hierarchical generalized 
additive models for location and scale (HGAMLS) [38–
41]. Specifically, we fit HGAMLSs with gamma location-
scale families of distributions to 7-day HR size, average 
daily distance traveled, and average daily diffusion (since 
all three were strictly positive; see Additional file 2: Table 
S1), whereas we modeled excursivity using an HGAMLS 
with a beta location-scale family of distributions. The 
code for the family was provided to us by Dr. Simon 
Wood, the developer and maintainer of the mgcv pack-
age, and is available in our GitHub repository.

All four models had the same set of three terms for 
both the mean and scale linear predictors: (1) A group-
level fixed-effect intercept and smooth term of time 
(days since 1 August) accounted for differences across 
each combination of sex and treatment level. (2) A “sum-
to-zero” smooth term of time between the two study 
years (for each combination of sex and treatment level) 
accounted for the differences between study years while 
weighing each year equally. (3) A factor-smooth interac-
tion term for each animal in each study year accounted 
for individual-level deviations from the group-level 
mean. Additional details on the models’ structures are 
provided in Additional file 2.
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Accelerometer data analyses
To quantify fine-scale movement behavior, we defined 
accelerometer-based activity states for each animal that 
we derived using vectorial dynamic body acceleration 
(VeDBA) [42], a rotationally invariant metric propor-
tional to body movement that is strongly and positively 
associated with energy expenditure [43]. We estimated 
the static acceleration using the three mean acceleration 
axes (X, Y, and Z) in non-overlapping 2-s intervals, and 
we calculated the log mean VeDBA for each interval to 
quantify the intensity of activity [44]. To account for dif-
ferences among devices, animals, and the positioning 
of the devices on animals’ necks, we defined behavioral 
states for each individual based on each collar’s local 
minima in the distributions of log mean VeDBA, with 
VeDBA = 0 (log mean VeDBA = − Inf ) as a no-activity 
state. We thus had four states, namely no, low, medium, 
and high activity. We visually inspected the log mean 
VeDBA histograms for each month for 10 individuals to 
ensure consistent minima values over time. To quantify 
changes in daily behavior, we computed the daily pro-
portion of time spent in each activity state and the daily 
number of transitions between different states. Addi-
tional details can be found in Additional file 7.

Modeling time in activity states and transitions
To estimate the effects of the treatment on fine-scale 
movement behavior, we used the mgcv R package [38] 
to fit hierarchical generalized additive models (HGAMs) 
to the proportion of time spent in the no- or low-activity 
states and the daily number of transitions between states 
(Additional file 2: Table S2). The first HGAM used a beta 
distribution and logit link function, whereas the second 
HGAM used a negative binomial family of distribu-
tions and a log link function. The HGAMs had the same 
terms as the HGAMLSs described in the previous section 
(Additional file 2: Table S1) but assumed a common and 
constant mean-variance relationship (i.e., a common and 
constant scale parameter).

Results
Capture and collaring
Between 23 August and 13 December 2021 (Year 1) and 
14 August 2022 and 8 January 2023 (Year 2), 158 adult 
deer (a total of 52 males and 106 females in SI and RSPP; 
Table 1) were captured and fitted with biologging devices. 
Seven devices failed to transmit GPS fixes (Additional file 
5: Figure S1A); therefore, we included only collar-stored 
GPS fixes (e.g., one fix/4-h) and accelerometry data for 
these animals in the analyses. In Year 1, we excluded 10 
individuals from the study who died before the first frost 
due to unknown causes during a known epizootic hem-
orrhagic disease outbreak (the tracking duration was 
typically less than 45 days and not during the periods of 
interest). Similarly, we excluded 23 individuals from the 
study with tracking periods of < 28 days and one owing to 
collar failure. At both sites, eight females and two males 
were tracked in both years. Our final sample, therefore, 
included data from 21 males and 42 females in Year 1 and 
19 males and 42 females in Year 2 (Table 1).

Among the animals in the study from Year 1, we 
recorded nine mortalities (collars collected on 30 May 
2022), whereas in Year 2, we recorded five (collars col-
lected on 20 June 2023; Additional file 3: Table S1). None 
of the animals in the study were harvested through hunt-
ing at the control site; however, poachers killed two study 
individuals at the control site. In the final set of moni-
tored deer, we recorded seven DVC-related mortalities (4 
in SI and 3 in RSPP) and four owing to unknown causes 
(1 in SI and 3 in RSPP). The mortality rate of individuals 
in the study was overall lower at the treatment site, but 
there were no significant differences at the α = 0.10 level, 
even within sexes. Fisher’s exact test produced the fol-
lowing estimated odds ratios (treatment relative to con-
trol): 0.55 overall (P = 0.3861), 1.4 (P = 1.0) for males, 0.29 
for females (P = 0.1511).

Movement behavior
We produced HR size estimates for all 7-day windows 
for all individuals and removed 99 estimates (1.05% of 
the total; Additional file 4: Table S1) because of a lack 
of range residency that resulted in excessively large esti-
mates (> 10 km2; range: 10–179 km2). Only 60.3% of the 
ctmm movement models had sufficiently fine telemetry 
data to estimate the daily distance traveled, but almost 
all movement models (98.9%; Additional file 4: Table S1) 
could produce daily diffusion estimates.

Females in both groups exhibited similar sizes and 
trends over time in all four movement metrics (Fig.  2; 
Additional file 4: Tables S2 and S3). Males in the control 
site increased their 7-day HR size, daily distance trav-
eled, daily diffusion, and daily excursivity around the 
peak of the November breeding season (all four approxi-
mate p-values < 2.7e-06; see Fig. 2, Additional file 4: Table 

Table 1  Number of individuals captured and number of 
individuals included in the study (# individuals captured; # 
individuals included in the study) at the treatment site in Staten 
Island, NY, USA and at the control site in Rockefeller State Park 
Preserve, Pleasantville, NY, USA in both study years (2021–2022; 
2022–2023)

Year 1 Year 2
SI RSPP SI RSPP

Females 34; 21 27; 21 24; 22 21; 20
Males 17; 11 13; 10 12; 10 10; 9
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S2 and Table S3). After early December, the daily dis-
tance traveled, daily diffusion, and excursivity measures 
declined to previous values and remained approximately 
constant, whereas the 7-day HR size exhibited a less 
noticeable increase and decrease. Males in the treatment 
site did not change their HR size significantly over time 
(approximate p-value = 0.60) and had less pronounced 
peaks in diffusion (approximate p-value: < 2e-16) and 
excursivity (approximate p-value: 7.87e-05), but we found 
no appreciable differences between the temporal trends 
in the mean daily distances traveled by the treated and 
control males. All four models explained ≥80% of the 
deviance.

Activity
The log mean VeDBA distribution included three distinct 
peaks across all individuals in our study (Additional file 7: 
Figure S1). Upon inspecting the subset of 10 individuals, 

we found no differences in the histogram’s monthly local 
minima values compared with that of the full year (Addi-
tional file 7: Figure S2), indicating that these peaks could 
be used as activity levels to consistently characterize 
behavior across individuals.

Vasectomized males tended to spend a greater pro-
portion of time in the no- or low-activity states, but we 
found no appreciable difference between females at the 
two sites (Fig.  3A; Additional file 4 Table S2 and Table 
S3). At both sites, males showed comparable increases in 
daily state transitions in fall and similar values through-
out the year (Fig.  3B). Treatment-site females exhibited 
more daily behavioral transitions in winter, but there 
were no appreciable differences between fall, late winter, 
and spring (Fig. 3B). Both models explained most of the 
deviance (state: 64.4%, daily transitions: 70.7%).

Fig. 2  Trends in 7-day home range, daily distance traveled, daily diffusion, and daily excursivity. Trends in the mean 7-day home range (A), daily distance 
traveled (B), daily diffusion (C), and daily excursivity (D) over the day of the year by sex and treatment status. The 95% Bayesian credible intervals were 
estimated using a Gaussian assumption of the residuals and account for uncertainty in the scale parameter. The first red line indicates the beginning of 
peak breeding season (10 November), and the second indicates the end of the potential extra estrus periods (1 April)
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Discussion
This study examined the effects of a high-percentage 
vasectomy program (> 97%) on breeding-related move-
ment and activity behaviors of free-ranging deer [26]. We 
focused on whether males and females in the treatment 
area exhibited prolonged breeding-related movements 
and increased activity beyond the peak breeding season 
due to repeated estrus periods in unsuccessfully bred 
females. We hypothesized that males would not exhibit 
any biologically significant differences in movement 
behavior or activity between sites, whereas females would 
show differences in fine-scale activity but not movement 
behavior during extra estrus periods (Additional file 1: 
Table S1). Overall, our findings revealed minimal differ-
ences in movement behavior and activity between the 
treatment and control sites, with no appreciable varia-
tions attributable to extra estrous cycling at the treatment 
site. Treatment site movement behavior and activity were 
consistent with the hormonally-driven patterns exhibited 
at the control site. At both sites, female patterns were 
relatively stable throughout the study period, and male 
movement behavior peaked in November and declined 
throughout winter. This consistency in pattern between 
sites supports the conclusion that fertility control meth-
ods leading to extra estrus periods can be implemented 
with minimal population-level behavioral alterations at 
the time scale studied.

Female deer movement behavior and activity
As hypothesized, we did not find appreciable differ-
ences between the groups’ large-scale movement behav-
iors during the extra estrus periods. While this may be 
due to the brief duration of estrus bouts and pre/post 

conception activity (48–96 h) [14, 22] relative to the win-
dow size (7 days), narrower windows would have likely 
produced less accurate movement metrics (particularly 
HR size) owing to insufficient effective sample sizes [35]. 
A lack of synchronization across estrus periods could 
also cause the HGAMLS to fail to detect common oscil-
lations, but sensitivity analyses showed little to no change 
in both the group-level and individual-level smooth 
terms, even for very large basis sizes (k = 30; not shown).

The slight tendency of treated females to spend more 
time in lower activity states while exhibiting more state 
transitions per day suggests that they may be less active 
overall but more responsive to nearby males during addi-
tional estrus periods. However, this difference does not 
appear substantial enough to negatively impact body 
condition, especially since females at the treatment site 
are unlikely to be gravid [26]. Existing studies compar-
ing PZP-treated and untreated females indicate that 
non-gravid, non-lactating treated females tend to main-
tain or even improve body condition relative to gravid or 
lactating females [15]. This suggests that females at the 
treatment site may similarly maintain or improve body 
condition, as they are not subjected to the high metabolic 
demands of gestation, parturition, and lactation. Finally, 
mortality rates were lower at the treatment site, further 
suggesting that the program had minimal adverse effects 
and reinforcing the program’s safety.

Male deer movement behavior and activity
Our analysis found no substantial differences in the 
movement behavior of male deer between treatment 
and control groups. While treated males had lower mea-
sures and smoother curves for HR size, diffusion, and 

Fig. 3  Trends in behavioral states and daily number of transitions. Mean trends over the day of the year in the proportion of time spent in the no- or 
low-activity state (A) and the daily number of transitions between states (B) by sex and treatment status. The colored line shows the model-predicted 
mean, whereas the shaded ribbons indicate the associated 95% Bayesian credible intervals (under the assumption of Gaussian residuals). The first red line 
indicates the beginning of peak breeding season (10 November), and the second indicates the end of the potential extra estrus periods (1 April)
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excursivity during the breeding season, there were mini-
mal variations thereafter, suggesting that both groups 
behaved similarly (e.g. males increase movement during 
peak breeding and decrease it in subsequent months). 
These patterns align with the findings of previous studies 
on breeding-related behavior [19–21] in which expanded 
breeding-related movement in male deer is linked to day 
length and peak testosterone levels [24]. As we expected, 
males at the treatment site did not maintain the larger 
breeding-related movement levels in January–March, 
despite female’s extra estrus periods. The flatter trends 
at the treatment site suggest a less pronounced peak 
breeding season. This could indicate that unsuccessfully 
bred females can enter estrus earlier in the year because 
they do not expend energy in gestation and lactation 
[45] and that males may remain active as unsuccessfully 
bred females return to estrus in mid-to-late Decem-
ber; however, their overall patterns remained similar to 
males at the control site. An alternative explanation for 
the less pronounced peak could be related to differences 
in habitat between the two sites. Suburban environ-
ments provide high-quality edge habitat, offering reliable 
anthropogenic food sources, such as ornamental plant-
ings, bird feeders, and landscaped green spaces [46, 47]. 
These anthropogenic resources can reduce the need for 
long-distance foraging movements, potentially leading 
to more localized activity patterns compared to deer in 
more rural or agricultural settings [48–50]. Although 
the two sites had comparable habitat in areas where we 
captured deer, individuals on Staten Island ultimately 
occupied more habitat that included impervious surfaces 
(e.g., dwellings, office parks), which may have increased 
their access to anthropogenic resources and contributed 
to reduced overall space use (Additional file 8: Table S1) 
[49].

Contrary to previous observations on breeding behav-
ior [20, 21], the 7-day HR size did not decrease to 
early-fall levels after December at either site. Testoster-
one-linked movements associated with breeding typically 
diminish in late December, leading to more localized, 
sedentary feeding behavior [24]. Nevertheless, there were 
clear differences in how males moved within their HR 
post-peak breeding (daily distance traveled, daily diffu-
sion, and excursivity all declined), which suggests behav-
ioral shifts following the breeding season.

Treatment-site males showed a marginally higher ten-
dency to spend more time in the no- and low-activity 
states than control-site males, but the higher number of 
transitions between activity states, especially in Decem-
ber and January, may suggest extended responsiveness 
to females in estrus. However, this did not correlate 
with any variation in activity levels that could be associ-
ated with illness or compromised health [51, 52], such 
as an increased proportion of time in low-activity states 

indicating illness. This conclusion is also supported by 
the lack of unexplained male mortalities (see Methods) 
and a consistent long-term pattern in carcass pickups (no 
increase during or after extra estrus periods; Additional 
file 3: Table S2).

Implications and future research
This study provides a comprehensive analysis of the 
breeding-related movement and activity patterns of free-
ranging deer using precise, high-resolution data that 
surpasses the limitations of coarse datasets and captive 
animal studies that have influenced the existing literature. 
Our findings challenge the primary management con-
cerns related to fertility control programs, specifically the 
potential for increased DVCs and reduced body condi-
tion due to prolonged breeding-related movements. We 
observed no evidence of negative outcomes during the 
study period, suggesting that vasectomy programs may 
induce negligible behavioral and social changes without 
significant impacts on population health or public safety. 
To further bolster our conclusions, closely monitored 
DVCs have declined by 75%, and the overall population 
has declined by 45% since the inception of the vasectomy 
program in 2016 [26]. However, the results of this study 
should not be assumed to be universally applicable to 
other ungulate populations. Nevertheless, the absence of 
appreciable negative outcomes in this context supports 
the continuous use of this program as a safe and humane 
management tool.

However, several limitations must be considered. 
Movement patterns may have been influenced by the 
fragmented suburban habitat at the treatment site and 
the agriculturally productive habitat at the control 
site [46, 47]. However, we were able to observe move-
ment changes in males during the peak breeding sea-
son and subsequent declines post-breeding regardless 
of treatment status. We would expect to see this behav-
ioral change in any habitat at any density. Additionally, 
we could not determine the reproductive status of all 
females, though we assumed most treatment-site females 
were non-reproductive based on population estimates 
and a ∼ 95% reduction in fawning at the treatment site 
[26]. Investigating the effects of late gestation and par-
turition on female movement could provide additional 
insights. Future research on the effects of age-class dis-
tribution and density on breeding-related movements 
would facilitate the evaluation of the broader implica-
tions of this program.

Conclusions
We presented the first fine-scale study of the effects of 
a high-percentage vasectomy program on a population 
of deer. While fertility control methods are often disre-
garded owing to concerns about behavioral changes, we 
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used a multi-scale, treatment-control, semi-experimental 
design with robust quantitative analysis to demonstrate 
that using high-percentage vasectomies as a means of 
population control had no biologically significant adverse 
effects on deer’s movement behavior or activity. The 
approach used in this study can inform broader man-
agement practices, and this framework may be adapted 
to evaluate other wildlife management interventions, 
offering valuable insights into their long-term ecological 
impacts.
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