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Abstract
Background Animals with key ecological roles, such as seed-dispersing fruit bats, rely to varying degrees on habitat 
structure to indicate the locations of resources and risks.

Methods To understand how variation in vegetation structure influences fruit bat habitat selection, we related 
movement steps of hammer-headed bats (Hypsignathus monstrosus) to attributes of canopy height, vertical and 
horizontal vegetation structure, and habitat type in a mature rainforest of southern Cameroon. Vegetation structural 
metrics were measured with UAV-LiDAR at 10 m resolution for a 25 km2 study area. Because bats frequently moved 
outside the study area, we also characterized vegetation height and horizontal complexity over the full extent of bat 
movement trajectories by upscaling UAV-LiDAR measurements using primarily GEDI LiDAR data.

Results At the site level, hammer-headed bats preferred areas of intermediate canopy height (13.9–32.0 m) close to 
large canopy gaps (≥ 500 m2). Individual bats varied in selection for vertical vegetation complexity, distance to smaller 
canopy gaps (≥ 50 m2) and plant volume density of intermediate vegetation strata (10–20 m). Over the full extent of 
movement trajectories, hammer-headed bats consistently preferred intermediate canopy height, and areas closer 
to canopy gaps. At both spatial extents, bats moved the shortest distances in swamp habitats dominated by Raphia 
palms. These behaviors indicate the use of forest types that vary structurally, with a preference for open airspace 
during foraging or moving among resources, and for dense swamp vegetation during roosting and resting periods. 
In addition, most bats regularly made long flights of up to 17.7 km shortly after sunset and before sunrise and limited 
their movements to three or fewer destinations throughout the tracking period.

Conclusions These results highlight the importance of structurally diverse landscapes for the nightly movements of 
hammer-headed bats. Our results show how remote sensing methods and animal tracking data can be integrated to 
understand habitat selection and movement behavior in tropical ecosystems.
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Background
Animal movements have critical consequences for eco-
system functioning and viral spillover, but are underex-
plored in tropical habitats. Fruit bats (Pteropodidae) are 
important long-distance seed dispersers [1] and viral 
reservoirs in tropical ecosystems [2]. For example, a sin-
gle colony of straw-colored fruit bats (Eidolon helvum) 
in Ghana can disperse hundreds of thousands of seeds 
in one night, and up to 95  km—among the longest dis-
tances of any known disperser [1]. Beyond the economic 
value this ecosystem service provides for tropical refor-
estation, seed dispersal by bats ultimately influences the 
genetic diversity and species composition of rainforest 
tree communities [3, 4]. Understanding the movements 
of fruit bats is also potentially important in predicting 
disease transmission. Many bat species have an unusually 
high virus tolerance and may, consequently, act as viral 
reservoirs, although robust evidence for bats as reservoir 
hosts is lacking in most African study systems [5]. How-
ever, changes in bat behavior and resource selection—
especially those that lead bats to come into contact with 
humans—are sometimes thought to heighten the possi-
bility of viral spillover [2, 6].

Animals evaluate landscapes according to the distribu-
tion of resources and risk. Resources include foraging, 
resting, and nesting areas, while risks include predation 
and thermal stress [7]. Vegetation structure can indicate 
the locations of resources and influence route use [8, 9]. 
Three-dimensional vegetation structure has been shown 
to shape bat communities, with some species preferring 
denser vegetation and others preferring open airspace for 
foraging [10]. Vegetation can sometimes hinder maneu-
verability by obstructing bats’ flight paths [11]. Charac-
terizing 3D vegetation structure at fine scales (sub-meter 
resolution) is possible with terrestrial, drone-mounted, 
and airborne Light Detection and Ranging (LiDAR) 
[12]. This capability enables ecologists to quantify the 
3D space use of arboreal and aerial animals [13]. How-
ever, animals may move across seasonal home ranges that 
exceed extents that can be surveyed by high-resolution 
LiDAR. Spaceborne LiDAR, including the recent Global 
Ecosystem Dynamics Investigation (GEDI) mission, 
addresses this problem by collecting 3D vegetation struc-
ture data at a near-global extent [14], albeit with gaps in 
spatial coverage due to its sampling design. Spaceborne 
LiDAR is therefore a promising tool for understanding 
how animals evaluate landscapes throughout migrations, 
dispersal, and nomadic movements.

Remote sensing can provide information about animal 
habitats that would not be possible from collecting in 

situ data, but there are still challenges in characterizing 
landscapes in ways that are relevant to animal behavior 
[15]. Animals may prefer habitat features at different spa-
tial and temporal scales [16, 17], and many remote sens-
ing measurements—which are not normally designed 
for animal ecology—are imperfect or indirect indicators 
of preferred habitat features. Because habitat features 
are difficult to characterize at fine scales and over large 
spatial extents, recent methods have presented “upscal-
ing” procedures that infer missing measurements based 
on machine learning [18]. Through this approach, maps 
of canopy height and structural complexity have become 
available at global scales [19–21]. Widespread adoption 
of machine learning methods to improve large-scale 
characterizations of animal habitat can greatly advance 
ecological research.

It is advisable for movement ecology research to keep 
pace with advances in remote sensing, which now enable 
the characterization of 3D vegetation structure at broad 
spatial extents [15]. Some species of fruit bats fly dozens 
of kilometers per night [1], encountering a variety of hab-
itats as they commute among resources, and often using 
social cues to gather information [22, 23]. Well-studied 
species display advanced spatial memory of fruiting trees 
and roosting sites [24, 25]; in fact, the Egyptian fruit bat 
(Rousettus aegyptiacus) creates new routes among these 
resources using cognitive map-based navigation [25]. 
Disentangling the role of remotely-sensed landscape 
features in predicting bat movement behavior will help 
guide conservation decisions and predict disease spread 
[6]. Continued research linking animal movement to 
remotely sensed landscape features can address how 
animals move in relation to landscape features, and how 
their movements influence vegetation structure through 
seed dispersal and nutrient transport [26].

Hammer-headed bats (Hypsignathus monstrosus) are a 
lekking species that can be found in mature rainforests, 
rural settlements, and urban areas in Central and West 
Africa, and they are the largest fruit bat species of con-
tinental Africa [27, 28]. This species has been observed 
migrating along the Congo River, and movements up to 
10 km have been tracked previously at a lek in the Repub-
lic of the Congo [27, 29]. Still, next to nothing is known 
about potential migratory movements of hammer-
headed bats, which are a suspected—but unconfirmed—
reservoir of Ebolavirus [30, 31]. A GPS tracking study 
revealed that hammer-headed bats prefer agricultural 
areas in a managed forest-agricultural landscape, and 
typically move along waterways [27]. Because hammer-
headed bats often vocalize in large canopy gaps and roost 
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in dense vegetation, we expected 3D vegetation structure 
to influence their habitat selection in a mature tropical 
lowland rainforest.

We aimed to reveal the attributes of 3D vegetation 
structure that influence hammer-headed bat movements. 
Specifically, we explored (1) Individual-level selection for 
3D vegetation structure and habitat types at 10 m spatial 
resolution, (2) Population-level selection for vegetation 
structure at coarser spatial resolution (30 m) and across 
the full extent of bat movement trajectories, and (3) 
Nightly movement distances and recursions to locations 
of high use.

Methods
Study site
All field research took place within the Bouamir Research 
Site (hereafter, “Bouamir”), a 25 km2 study area near the 
center of the Dja Faunal Reserve in southern Cameroon 
(3°11’ N, 12°48’ E). The site comprises mainly terra firma 
forest, Raphia palm-dominated swamps, and grass-cov-
ered peaks called inselbergs. A LiDAR survey for the 
entire study site was completed with an unoccupied aer-
ial vehicle (UAV-LiDAR) in March 2022, providing a 3D 
point cloud with an average density of 300 points · m− 2 
(Reddy et al. 2024; Fig. 1A).

Bat capture and tracking
We captured bats using mist nets (38 mm gauge) placed 
in the canopy in front of known roosts within Bouamir 
and captured five bats each in Aug. 2022 and Aug.-Sep. 
2023 (n = 10 total bats). We constructed and operated 
canopy mist nets following [32] from sunset until sunrise. 
We tagged seven males and three females with a solar-
powered 15 g GPS tag containing an accelerometer (man-
ufactured by e-obs). Tags were glued to a lightweight 
“cape” fastened around the neck using a 0.9525 cm (3/8”) 
strap (BioThane) secured with a plastic snap rivet, similar 
to [29] but with different materials. Tags collected a GPS 
location every thirty minutes from 17:00–7:00 local time. 
We downloaded GPS data from each tag throughout the 
tracking period using an e-obs BaseStation with a 10-ele-
ment Yagi antenna. We retrieved 3–15 nights of data 
from nine bats (Fig. S1) and used GPS data from these 
individuals for analyses. We did not retrieve enough 
data from the tenth bat. All capture and tracking meth-
ods were approved by Cameroon’s Ministry of Scientific 
Research and Innovation and Ministry of Wildlife and 
Protected Areas, and the University of California, Los 
Angeles Animal Research Committee, under protocol 
#2019-037-01.

Habitat selection at site level (25 km2)
We quantified habitat selection of each bat based on 
seven structural metrics measured with UAV-LiDAR 

within the Bouamir Research Site, representing canopy 
height, vertical complexity, and canopy cover (Fig.  1A; 
descriptions in Table S1). After an initial period of data 
exploration, it appeared that most of the bats preferred 
areas with intermediate canopy height relative to avail-
able habitat, so we chose to include a quadratic term for 
canopy height that would capture a potential nonlinear 
relationship. Because the study site includes three major 
habitat types (terra firma forest, Raphia palm-dominated 
swamps, and inselbergs), we delimited these habitat types 
using a Convolutional Neural Network (CNN) applied 
to a composite, cloud-free Sentinel-2 image centered on 
Cameroon’s rainforest zone and covering 178,930  km² 
[33]. We implemented the CNN by identifying land cover 
type (e.g., forest, swamp, and inselberg) of 10,084 poly-
gons within the Sentinel-2 image and inferring the distri-
bution of each habitat type in the full image using Orfeo 
ToolBox [34], with 80% of polygons used for training and 
20% for validation. We included two habitat categories 
in habitat selection analyses, “swamp” and “non-swamp”, 
because two bats rarely or never encountered inselbergs.

We quantified each individual bat’s selection for each 
habitat variable using an integrated Step Selection Analy-
sis (iSSA), which uses a conditional logistic regression 
to estimate parameters of habitat selection behavior and 
movement behavior together in the same model. The 
iSSA compares bat movement “steps”—the straight-line 
distance between successive GPS locations—to 100 ran-
domly generated steps based on the observed distribu-
tion of step lengths and turn angles [35]. We included 
the log-transformed step lengths and cosine of the turn 
angles as metrics of movement behavior in our mod-
els [36]. We added 1  m to all step lengths prior to log-
transformation so that any sedentary periods would yield 
a value of zero or greater. We scaled and centered each 
continuous habitat covariate before inclusion in analy-
ses and only included covariates in models that were 
not highly correlated (Pearson’s correlation coefficient 
<|0.6|). Field observations of bat roosting locations and 
suspected foraging locations led us to test the hypoth-
esis that movement step lengths were shorter in swamp 
habitats, and so we also included a term representing the 
interaction between movement step length and use of 
swamp habitat in iSSA models. We determined the direc-
tion and magnitude of selection for each covariate based 
on selection coefficient estimates from the iSSA. All iSSA 
models were fit using the “fit_issf” function in the “amt” 
R package (version 0.2.1.0) [37].

To determine the influence of canopy height on habitat 
selection for each bat, we calculated the Relative Selec-
tion Strength (RSS) for each value of canopy height rela-
tive to the mean canopy height of habitat available to the 
bats, while holding all other covariates constant [38]. This 
metric enabled us to characterize a nonlinear relationship 
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Fig. 1 Movement trajectories of all bats and a depiction of the two spatial extents of habitat selection analyses. (A) Attributes of 3D vegetation structure 
measured at 10 m resolution were limited to the 25 km2 site level within the UAV-LiDAR extent of Bouamir Research Site. Bat movement tracks are overlain 
on a map of canopy height (black = 0 m, white = 55 m). Note that canopy height (height of first LiDAR Return) was included in all models as a quadratic 
term (canopy height + canopy height2). Vertical complexity: total diversity of 3D point cloud distribution measured from ground to top-of-canopy; Dis-
tance to gap: straight-line distance to nearest area with no vegetation > 5 m; Plant Volume Density: leaf area per volume within a specified height bin 
(10–15 or 15–20 m). Swamp: habitat characterized by seasonal or permanent shallow water and characterized by dominance of Raphia palm species. (B) 
We used upscaled 3D vegetation structure metrics to quantify habitat selection at the landscape level, which encompassed the full scale of bat move-
ment tracks, including the boundary of the Dja Faunal Reserve. Canopy height: predicted value of 95th percentile relative height (RH 95). Distance to 
gap: straight-line distance to nearest area with no vegetation > 15 m. Canopy heterogeneity: standard deviation of canopy height at a specified spatial 
resolution (100–1000 m). Swamp: same as in panel A. (C) The inset photo shows a male hammer-headed bat carrying a 15 g e-obs tag
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between canopy height and habitat selection for each bat. 
We assessed the fit of iSSA models to each individual bat 
with used habitat calibration (UHC) plots, which com-
pare predicted values of each covariate to the distribu-
tions of both selected and available habitat using k-fold 
cross validation [39]. We simulated 1000 distributions of 
all covariates except the interaction term, and using k = 5 
folds, using the “prep_uhc” function in the “amt” R pack-
age [37].

Finally, we used a generalized linear mixed effects 
model (GLMM) to estimate population-level selection 
for each covariate, using the “glmmTMB” R package (ver-
sion 1.1.7) [40, 41]. This model included all covariates 
from the iSSAs as fixed effects and treated individual bat 
IDs as a random effect.

Habitat selection at the landscape level
Because seven of the nine bats flew beyond the 25 km2 
study area surveyed by UAV-LiDAR, we needed to char-
acterize vegetation structure over the full extent of the 
bats’ movement trajectories to understand habitat selec-
tion at the landscape level. We hypothesized that canopy 
height influences bat habitat selection and therefore 
targeted this metric and three derivatives: location of 
canopy gaps and height heterogeneity at two different 
spatial resolutions (100 and 100 m; Fig. 1B). We used data 
from the GEDI spaceborne LiDAR because its measure-
ments cover most of the world’s temperate and tropical 
regions at 25  m resolution. However, GEDI’s pervasive 
gaps in spatial coverage required us to interpolate mea-
surements of vegetation structure using a Random Forest 
algorithm. The resulting product was a continuous-cov-
erage (“wall-to-wall”) map of canopy height for a 300 km 
buffer around Cameroon’s Dja Faunal Reserve (~ 494,000 
km2), which covered the full extent of bat movement 
trajectories. Characterizing vegetation structure at the 
landscape level required two main steps: (1) Calibrate 
GEDI measurements using airborne and UAV-LiDAR 
measurements and (2) Interpolate canopy height values 
where GEDI data are unavailable using optical and radar 
measurements.

Calibrating GEDI measurements required comparing 
airborne and UAV-LiDAR measurements to GEDI mea-
surements in areas where they overlap—in the Congo 
Basin, we selected three drone LiDAR surveys in Cam-
eroon [42] and 211 airborne LiDAR samples from the 
Democratic Republic of the Congo [43]. We used the 
vegetation relative height 95th percentile (RH 95) metric 
from GEDI Level 2  A (L2A) data as our target variable 
for creating a wall-to-wall map of canopy height [14, 44] 
because it best represents canopy height while filtering 
out potential anomalies. The RH 95 product represents a 
composite image of data collected from 2019 to 2022. As 
with many LiDAR studies, we assumed that vegetation 

structure does not differ significantly between the time 
of LiDAR acquisition and the time an animal visits the 
location, or that the location’s vegetation structure rela-
tive to the rest of the landscape will vary significantly 
through time [45]. We filtered the GEDI measurements 
to improve quality (e.g., eliminate cloud-covered pixels) 
and to find the closest comparison between GEDI mea-
surements and reference airborne and UAV-LiDAR data. 
To calibrate the RH 95 measurements, we systematically 
tested combinations of GEDI filters through six differ-
ent algorithm setting groups, each of which retrieves 
the location of the ground, with error propagating to the 
RH 95 estimate [46]. We identified the fifth GEDI qual-
ity algorithm as optimal, with the quality flag filter equal 
to 1 and sensitivity filter ranging from 0.98 to 1. To fur-
ther ensure data quality, we manually removed erroneous 
GEDI shots that were not filtered out by this method but 
displayed unnatural patterning along orbital tracks that 
indicated them as outliers (Fig. S2).

Because none of the LiDAR methods provide data over 
the full extent of bat movements, we trained a Random 
Forest algorithm using a third set of remote sensing vari-
ables with continuous coverage in the region of interest. 
These variables, which included measures of vegetation 
reflectance (from Landsat 8) and radar backscatter val-
ues (from Sentinel-1 and ALOS/PALSAR) do not directly 
measure canopy height but vary according to both veg-
etation height and cover [47, 48]. In other words, we pre-
dicted canopy height in areas not covered by the GEDI 
scanner using optical and radar measurements, based 
on the relationship between these variables and canopy 
height. The Random Forest algorithm works by gen-
erating multiple decision trees trained from a random 
subset of data with input variables, where the final pre-
diction—in our case, canopy height—is the unweighted 
average decision of the collection of trees [44]. We 
trained the Random Forest using 14 input variables that 
we expected to indicate or influence vegetation height, 
including Landsat 8 bands 2–7 and NIRv (near-infrared 
reflectance strictly from vegetation), Copernicus Digi-
tal Elevation Model (DEM), Copernicus DEM-derived 
slope and aspect, and Synthetic Aperture Radar measure-
ments from ALOS PALSAR-2 (HH and HV), and Senti-
nel-1 (VV and VH). We generated a 30 m canopy height 
map for the region because, unlike available products, 
our analysis was fit to southern Cameroon and therefore 
more locally accurate than global or pan-tropical canopy 
height maps, and it provided complete coverage of the 
494,000 km2 study area [19, 20].

We derived canopy height heterogeneity by aggregat-
ing canopy height values to 100 m and 1000 m resolution 
and calculating the standard deviation of the 30 m pixels 
within each grid cell. We also characterized canopy gaps 
at the landscape level using our 30 m canopy height map 
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and the “getForestGaps” function from the “ForestGapR” 
R package [49]. Unlike at the site level, where canopy 
gaps were defined as pixels with no vegetation taller than 
5  m [50], landscape-level canopy gaps were character-
ized as areas with no vegetation taller than 15  m. This 
definition increased the sensitivity of our methods to 
detect canopy gaps. We included an upper area thresh-
old of 500 ha for canopy gaps to include large villages but 
avoid including river surface area as canopy gaps, which 
we consider functionally different as a landscape feature 
[27]. We generated a raster representing distance to near-
est canopy gap in meters using the “distance” function in 
the “terra” R package (version 1.7–39) [51]. We included 
the terms for swamp and the interaction between swamp 
habitat selection and movement step length in the land-
scape-extent model. These were the only two terms 
included at the same resolution and extent in both the 
site- and landscape-extent models. We tested the effects 
of all landscape-level covariates (Fig. 1B) on population-
level habitat selection using the same methods described 
in the section “Habitat selection at the site level (25 
km2)” and further explored the difference in step lengths 
through swamp vs. non-swamp habitats using a Wil-
coxon signed-rank test.

Movement behavior
Fruit bats are known to repeatedly visit resources with 
directed movements [25, 27], known as “recursions” [52]. 
For each bat, we quantified the number of recursions to 
a 100 m radius around each GPS location using the “get-
Recursions” function in the “recurse” R package (version 
1.1.2) [53]. We used a k-means clustering algorithm to 
identify up to three centroids of recursions throughout 
each bat’s movement trajectory, representing the 75th 
percentile of recursions or greater [54].

Because some of the bats appeared to commute to 1–3 
locations after sunset and remain within a small radius 
at those locations, we were also interested in how step 
lengths varied with time since sunset. We explored this 
relationship using a generalized additive mixed model 
(GAMM) with a smoothed term for hours after sunset, 
implemented in the “mgcViz” R package (version 0.1.11) 
[55]. We also summarized both the distances between 
each bat’s successive GPS locations and distances from 
the capture location (Maximum Net Squared Displace-
ment) using the “adehabitatLT” package (version 0.3.27) 
[56]. All analyses were conducted using R version 4.3.1 
[57].

Results
Habitat selection at the site level (25 km2)
The quadratic term for canopy height strongly predicted 
site-level habitat selection for seven of the nine bats, indi-
cating a nonlinear relationship between canopy height 

and habitat selection. Examining the Relative Selection 
Strength across the range of scaled canopy height val-
ues revealed that these seven bats moved preferentially 
among habitats with intermediate canopy height, where 
the scaled range [-1, 1] represents 13.9 to 32.0 m (Fig. 2); 
that is, we detected a peak in preference near the mean 
canopy height encountered by these bats. This nonlinear 
relationship was also significant at the population level 
(GLMM: p < 0.001; Table 1).

Three of the nine bats preferred areas closer to can-
opy gaps of at least 50 m2 (Fig. 3A), and eight bats pre-
ferred areas closer to large canopy gaps (500 m2 or larger; 
Fig.  3B). At the population level, hammer-headed fruit 
bats preferentially selected habitats closer to large canopy 
gaps (GLMM: p = 0.001; Table  1), but not small canopy 
gaps. We did not detect a significant influence of Leaf 
Area Index (Fig. 3C), Vertical Complexity Index (Fig. 3D), 
or Plant Volume Density at heights of 10–15 (Fig. 3E) or 
15–20  m (Fig.  3F) on bat habitat selection at the popu-
lation level (Table 1). Still, individual bats varied in their 
preference for these four structural attributes, displaying 
both positive and negative selection for vertical com-
plexity and Plant Volume Density at heights of 10–15 m 
(Fig. 3). We also found that bats moved shorter distances 
in swamp habitats and were more likely to select other 
habitat types (terra firma forest and inselbergs) when 
moving longer distances (GLMM: p < 0.001; Table 1).

Used habitat calibration plots generally revealed an 
agreement between the distributions of each covariate in 
selected habitats and values predicted by the iSSA mod-
els fit to individual bats (Figs. S6-S16).

Habitat selection at the landscape level
Landscape-level habitat selection refers to selection along 
the full extent of movement trajectories, including areas 
beyond the 25 km2 study site surveyed with UAV-LiDAR. 
At this spatial extent, hammer-headed bats selected for 
intermediate canopy height, and at a coarser spatial res-
olution (30 m) (GLMM: p < 0.001; Table 2; Fig. 2B). Bats 
also selected areas closer to canopy gaps at the coarser 
spatial resolution and greater extent (GLMM: p < 0.001; 
Table  2). At 100  m spatial resolution, bats selected for 
areas of greater canopy height heterogeneity (GLMM: 
p = 0.019; Table  2) but selected for lower canopy height 
heterogeneity at 1000  m resolution (GLMM: p < 0.001; 
Table  2). At the landscape extent, mean bat movement 
distances were 1.95 times greater through non-swamp 
habitats compared to swamps (GLMM: p < 0.001; Table 2; 
Wilcoxon signed-rank test: p = 4.8e− 14; Fig. 4).

Used habitat calibration plots applied to landscape-
level iSSAs generally yielded narrower simulation enve-
lopes than those produced by site-level iSSAs, and 
exhibited agreement between the distributions of each 
covariate in selected habitats and values predicted by the 
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models (Figs. S17-S23). These findings indicate that the 
iSSA models were well-calibrated with an appropriate set 
of predictors [39].

Movement behavior
For each bat, we used k-means clustering to identify 
1–3 sites with recursive movements in the 75th per-
centile (Fig.  5), indicating locations of high probability 
of use. Recursive movements to high-use locations var-
ied among bats but ranged from eight to 63 visits. All 
bats displaced at least 3 km from their capture location 
(Fig. S3). In a single night, bats flew total distances up to 
42.3 km (mean ± SD: 10.8 ± 10.2 m). The greatest distance 
a bat displaced from the tagging location was 18.3  km 
(Fig.  5); during this flight, a female bat (ID:10232) flew 
17.7  km within 30  min (Fig. S4) and left the protected 
Dja Faunal Reserve to enter a human-settled landscape 
(Fig. 1B). We detected a nonlinear relationship between 
step lengths and hours after sunset (GAMM: R2 = 0.067; 
p < 0.001), with many individuals moving the greatest 
distances shortly after sunset and again before sunrise 
(Fig. S5).

Table 1 Estimated effects of covariates on bat habitat selection 
at the Bouamir Site extent (25 km2). SE = standard error; 
PVD = Plant Volume Density. All covariates are described in Table 
S1
Covariate Estimate (SE) p-Value
Canopy Height 0.093920 (0.076826) 0.221520
Canopy Height2 -0.250313 (0.045223) 3.11e-08***
Vertical Complexity Index -0.024639 (0.058583) 0.674065
Leaf Area Index -0.008522 (0.038223) 0.823574
Distance to gap 50 m2 -0.154816 (0.114585) 0.176664
Distance to gap 500 m2 -0.369714 (0.111727) 0.000936***
PVD 10–15 m 0.007432 (0.054390) 0.891307
PVD 15–20 m 0.019122 (0.039091) 0.624734
Swamp 0.210982 (0.141709) 0.136529
log (Step Length + 1):Swamp 0.178383 (0.048899) 0.000264 ***
log (Step Length + 1) 0.032994 (0.023883) 0.167122
cos (Turn Angle) -0.552583 (0.131214) 2.65e-05 ***
The number of asterisks (*) after a coefficient estimate corresponds to 
significance at the level of 0.05 (*), 0.01 (**), and 0.001 (***), respectively

Fig. 2 Log-transformed Relative Selection Strength (log-RSS) for each value of canopy height relative to the mean (indicated by x = 0) at the (A) site level 
(25 km2) and (B) landscape level (full movement trajectories). Each line represents an individual bat. Negative selection for a canopy height value relative 
to the mean is indicated where the line takes on values less than y = 0, and positive selection is indicated where the lines take on values greater than y = 0. 
Note that the plots were generated using a different model structure, and that the limits of both axes differ between the plots
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Discussion
In this study, we showed how hammer-headed bats select 
habitats with respect to 3D vegetation structure at the 
landscape scale. At the population level, bats preferred 
areas of intermediate canopy height and areas close to 
large canopy gaps. This relationship was evident at both 
site-level (25 km2) and landscape-level (i.e., entire move-
ment trajectory) extents. However, individual variation in 
selection for other features of 3D vegetation structure—
including vertical complexity, Plant Volume Density, and 

distance to smaller canopy gaps—indicated that varia-
tion in both vertical and horizontal vegetation structure 
is important for supporting a population’s foraging and 
roosting behaviors.

Bats moved shorter distances in swamps compared to 
other habitat types. Movement distances can indicate 
resource tracking behavior; for example, large birds gen-
erally move longer distances through homogeneous habi-
tats to meet resource needs [58]. Black-casqued hornbills 
(Ceratogymna atrata) exhibit a similar behavior to bats at 

Fig. 3 Selection coefficients and 95% confidence intervals (CIs) for each linear environmental predictor of bat movements within Bouamir Research Site 
(25 km2), including (A) Leaf Area Index, (B) Vertical Complexity Index, (C) Distance to small (50 m2 or greater) and (D) large (500 m2 or greater) canopy 
gaps, and (E) Plant Volume Density at a height of 10–15 and (F) 15–20 m. 95% CIs that do not overlap x = 0 indicate a significant effect of the covariate on 
individual bat habitat selection. Each bat is represented in the y-axes. Note that the order of bats differs for each plot

 



Page 9 of 13Russo et al. Movement Ecology           (2025) 13:30 

the Bouamir Research Site, selecting swamps during hot-
ter temperatures and becoming less active [59]; swamps 
dominated by Raphia palms likely provide a cool location 
for a day roost and dense vegetation that may conceal 
birds and bats from predators. Still, we did not detect a 
population-level signal of bat selection for Plant Volume 
Density of mid-story vegetation strata (10–20 m), albeit 
with a small sample size and two-dimensional tracking 
methods. Swamp habitats occur throughout Cameroon’s 
rainforest zone and may be a necessary landscape feature 
for hammer-headed bat populations. Indeed, hammer-
headed bats in the Republic of the Congo preferred areas 
near watercourses, which could also indicate a preference 
for foraging or roosting in wetlands [27]. In addition, figs 
(Ficus spp.) are an important component of fruit bat diets 
that occur frequently along Central African waterways 
[60].

The preference of several individuals to move among 
areas close to large canopy gaps may also reflect selec-
tion of trees that produce abundant fruits with small 
seeds. Musanga cecropioides is one of the preferred spe-
cies in the hammer-headed bat’s diet [27], and it typi-
cally grows in disturbed and early successional areas, 
with some mature trees persisting in mature rainforest 
[61]. Although we did not determine which other spe-
cies might be consumed by hammer-headed bats in the 
area, small-seeded tree species like M. cecropioides are 
typically efficient colonizers of open, disturbed habitats 
[62] and large natural canopy gaps. Our results show that 
individual bats vary widely in their preference for other 
attributes of 3D vegetation structure, which may influ-
ence their roles as seed dispersers. Individual animals 
exhibit movement “personalities”, or behavioral types, 
that reflect different preferences in space use and have 
been hypothesized to influence spatial patterns of seed 
dispersal [63–65]. Such individual variation indicates 
the importance of landscape heterogeneity in supporting 
animal populations and their ecological roles, which can 
influence landscape heterogeneity in turn through seed 
dispersal [26]. Although fragmentation can limit many 
large-bodied frugivores from dispersing seeds among 
forest patches, smaller frugivores such as bats may play 
a key role in reforestation and recovery of aboveground 
carbon stocks by frequenting villages and canopy gaps 
[66].

Canopy height heterogeneity is a measurement of 
horizontal complexity in vegetation structure. At the 
landscape extent, bats selected areas of greater hetero-
geneity at the 100 m scale. Swamps, inselbergs, and the 

Table 2 Estimated effects of covariates on bat habitat selection 
at the landscape extent. SE = standard error. All covariates are 
described in Table S1
Covariate Estimate (SE) p-Value
Canopy Height -0.20391 (0.09409) 0.0302 *
Canopy Height2 -0.17474 (0.02818) 5.63e-10 ***
Distance to gap, threshold 15 m -0.20490 (0.04563) 7.11e-06 ***
Canopy heterogeneity (100 m) 0.14199 (0.06948) 0.0410*
Canopy heterogeneity (1000 m) -0.30371 (0.07040) 1.60e-05 ***
Swamp -0.02541 (0.11487) 0.8250
log (Step Length + 1):Swamp 0.17861 (0.04233) 2.45e-05 ***
log (Step Length + 1) -0.02517 (0.01665) 0.1307
cos (Turn Angle) -0.63586 (0.11222) 1.46e-08 ***
The number of asterisks (*) after a coefficient estimate corresponds to 
significance at the level of 0.05 (*), 0.01 (**), and 0.001 (***), respectively

Fig. 4 Difference in step length of bat movements (distance between successive GPS locations) between swamp and non-swamp habitats, including a 
Wilcoxon signed-rank test comparison (p = 4.8e− 14)
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research camp where all bats were captured typically 
had high height heterogeneity. At the 1000 m scale, hori-
zontal variation in vegetation structure was high in a 
region to the south of where bats were captured, marked 
by a high concentration of inselbergs. Accordingly, the 
1000  m scale may not be relevant to the scale of home 
range selection by many of the bats. The positive popula-
tion-level selection for canopy height heterogeneity may 
reflect a preference for transitional areas between forest 
and swamp or forest and inselberg.

Very few studies report animal movement data from 
the Central African tropics, and these studies are mainly 
from a limited number of taxa and intensively studied 
locations [67, 68]. Compounding this issue is the diffi-
culty of tracking bats over multiple seasons due to limi-
tations in battery life of tags [69]. Hammer-headed bats 
are thought to migrate long distances, but tracking tech-
nology has not yet revealed the nature of these events. 

During the short period we tracked hammer-headed bats 
(3–15 nights), we recorded displacements up to 17.7 km 
from roosting locations in a single night. These distances 
were greater than those reported from other studies of 
this species over a similar time period, but unlike these 
previous studies [27, 29], individuals in our study were 
not tagged at leks. Future tracking studies that capture 
seasonal variation in hammer-headed bat movement, 
including migrations, will be invaluable for character-
izing this species’ behaviors and their consequences for 
ecosystem functioning and disease transmission.

Nightly movements of hammer-headed bats were rela-
tively predictable, with repeated visits, or recursions, to 
one to three locations over the duration of the tracking 
period. Although these locations were sometimes sev-
eral kilometers apart, bats frequently exhibited directed 
movements, with long movement steps and turn angles 
near zero. Bats typically undertook these long, directed 

Fig. 5 Movement trajectories of each bat plotted over distance to canopy gap (15 m threshold) and the distribution of swamp habitats (gray polygons). 
Clusters of green, blue, and red points represent areas with the greatest revisitation rates (75th percentile or greater)
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flights shortly after leaving the roost at sunset. These 
observations provide further evidence of fruit bats’ 
advanced spatial memory. The Egyptian fruit bat, a 
related species, has been shown to possess a “cognitive 
map” of roosts and fruiting trees and develop shortcuts 
among these locations in areas with more open vegeta-
tion structure [25]. In more complex environments, such 
as tropical rainforests, spatial memory is thought to be 
less useful for animal movement due to the costs of pro-
cessing information [70]. Hammer-headed bats might 
overcome this problem by moving among easily distin-
guishable landscape features, such as inselbergs, which 
create large canopy gaps. Longer-term tracking studies 
would reveal how bats navigate and find new resources 
when fruits are depleted at repeatedly visited trees.

Although long-term studies of fruit bat movements 
are still challenging due to tradeoffs in tracking technol-
ogy, an important step towards understanding seasonal 
variation in fruit bat habitat selection is to characterize 
both vertical and horizontal vegetation structure at spa-
tial extents that cover the full range of their movements. 
We addressed this challenge by upscaling canopy height, 
gap, and heterogeneity metrics from a 25 km2 UAV-
LiDAR study area to a 494,000 km2 study area covering 
most of southern Cameroon and neighboring regions. 
Hammer-headed fruit bats forage in open spaces, roost 
in dense vegetation, and commute long distances across 
landscapes containing forests, wetlands, inselbergs, 
waterways, villages, agriculture, and other anthropogenic 
features [27]. NASA’s GEDI mission enabled us to char-
acterize 3D structure at a broader extent than what is 
possible with UAV-LiDAR alone [14]. Still, UAV-LiDAR 
surveys characterize 3D vegetation structure at much 
higher spatial resolution [71], so it is advantageous to 
investigate habitat selection by integrating UAV-LiDAR 
and spaceborne LiDAR, as we showed in this study. We 
expect this approach to be applicable to any study system 
in temperate and tropical regions where GEDI measure-
ments are available.

Conclusions
Tropical forests are hotspots for biodiversity, due in part 
to their high structural complexity [21]. Tropical humid 
forests exhibit high structural complexity in both verti-
cal and horizontal dimensions, and our study showed 
that hammer-headed bats require a wide variety of veg-
etation cover types, including open space near canopy 
gaps, swamp habitats, and forests of intermediate height. 
In human-settled areas, hammer-headed bats move pri-
marily among agricultural areas and waterways, likely 
driven by the need to find fruits [27]. Understanding how 
hammer-headed bats move among foraging and roost-
ing sites in mature rainforest habitat can lend insight 
into the habitat requirements necessary to promote their 

role as seed dispersers and limit the risk of viral spillover 
events. Integrating remote sensing methods to produce 
metrics relevant to animal habitat selection is an impor-
tant step towards linking landscape patterns to ecological 
processes.
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