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Introduction
Migratory birds make journeys that cross oceans, deserts, 
and mountain ranges, navigating with exceptional skill to 
their specific breeding and wintering areas. Our under-
standing of how they do this remains limited, despite 
decades of research [1]. While there is considerable 
knowledge about the mechanisms and capabilities birds 
possess for migration; less is known about what happens 
in the wild and specifically we do not fully understand 
how migratory birds use local information from moment 
to moment to navigate to a distant target. While birds 
likely use globally available cues, such as the position 
of the Sun and stars or the strength of Earth’s magnetic 
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Abstract
Avian navigation has fascinated researchers for many years. Yet, despite a vast amount of literature on the topic it 
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for a specific question, are analysed to identify as-yet-unknown patterns in behaviour. Current technological 
developments have led to large data collections of both animal tracking data and environmental data, which are 
openly available to scientists. These open data, combined with a data-driven exploratory approach using data 
mining, machine learning and artificial intelligence methods, can support identification of unexpected patterns 
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spatial and temporal scales.
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field, there is a debate on how they translate this informa-
tion into movement decisions that accurately lead them 
to a distant target.

There exists a vast amount of literature in both ecology 
and neuroscience on the use of various cues and strate-
gies in navigation, however, we note that definitions vary 
and there are also many contradictory findings [2]. It is 
not the purpose of this article to review all this literature, 
but we provide a quick overview of the main develop-
ments and terminology.

Navigation is a process of determining and maintain-
ing a course from the origin to a destination regardless 
of the distance or way of travel [3]. As Able [2] points 
out, in the past many researchers defined the term “navi-
gation” in many different ways, which led to substantial 
confusion and therefore it is best to adopt a broad defi-
nition of the general term and define specific navigation 
types separately. We note that navigation is not limited 
to migration, as similar processes are necessary to move 
from origin to destination during for example foraging 
trips, homing or other shorter trips.

The two commonly considered types in the study of 
avian navigation are vector navigation and true naviga-
tion, which we define here (although we note that other 
navigation types may also occur, such as piloting [4] or 
path integration, but see the controversy about path inte-
gration as described in [2]). Vector navigation is the abil-
ity to maintain a specific pre-determined direction for a 
specified time or distance [5]. This can also be done as 
a sequence of individual steps in different directions, 
each lasting for a specified time or distance. This type 
of navigation is also called a clock and compass orien-
tation strategy and is believed to be used by inexperi-
enced migrants. Birds can determine compass direction 
through their physiological compass using information 
from the Sun, the stars, the polarised light or Earth’s 
magnetic field [6, 7].

The second navigation type is true navigation, which is 
defined as the ability to navigate to a distant target after 
displacement to an unfamiliar location, using only locally 
available cues [8–10]. The implication of this is that the 
animal needs to have a spatial representation of where it 
is located relative to the target (positioning) and the sen-
sory information to orient itself (determining the com-
pass direction) that can be extrapolated beyond the local 
range [5]. The combination of positioning and orienting 
is traditionally described as a “map and compass” strat-
egy [11]. There is general consensus that orienting and 
maintaining direction in flight is done by a time-compen-
sated Sun compass, by a time independent stellar com-
pass or by a magnetic compass when the Sun or stars are 
not visible [6, 7]. However, the sensory basis for the map 
has not been determined and is subject to much debate 
[12]. In neuroscience, such a spatial representation is 

called a cognitive map, which is a mental representation 
of geographic reality [13, 14]. For humans, a cognitive 
map consists of knowing positions and spatial relations 
between landmarks in the external world [15]. For birds 
and other migratory animals, the cognitive map, if it 
exists, may involve more than just landmarks, and posi-
tioning information may come from visual, geomagnetic, 
olfactory and acoustic sources [12].

Two potential types of a cognitive map have been pro-
posed for birds: a mosaic map and a bi-gradient map. A 
mosaic map [2] is the equivalent of the human cognitive 
map, in that it is formed from learned spatial relation-
ships between landscape features and key locations (e.g. 
in human terms home, school or work). It has been pro-
posed that these landscape features can either be visual 
landmarks or odours that guide olfactory navigation (see 
this review [2] for original references for both sugges-
tions). There has been contradictory evidence to exis-
tence of either of these two mosaic map types for birds 
and other animals and specifically no GPS-based stud-
ies have been able to confirm its existence for birds. We 
note that a recent study using high spatial and temporal 
resolution GPS data found evidence that is consistent 
with use of a landmark-based cognitive map by wild bats 
during foraging [16]. Of note however is that a map of 
this type would by its nature only be useful over the geo-
graphical extent of the learning, which may be of limited 
application for long-distance navigation over unfamiliar 
terrain.

The second type of proposed map is a gradient map 
or a grid map, where at least two cues vary across large 
regions in a systematic and stable manner, to facilitate 
positioning in a similar way as humans use the two Car-
tesian dimensions (i.e. X and Y) on a map [2]. Bi-gradient 
maps could theoretically be based on geomagnetic infor-
mation [6]: magnetic inclination and intensity gener-
ally vary across the North-South axis and could be used 
as determination of latitude. In some parts of the world 
declination varies in the East-West direction and could 
be used to determine longitude. However, there is to date 
no empirical evidence from tracking data that a geomag-
netic map exists (e.g. see [17]). In our recent work based 
on GPS tracking and contemporaneous real geomagnetic 
data we also found such a strategy highly unlikely [18, 
19]).

For olfactory navigation, the map does not have the 
structure of a bi-coordinate system, which would allow 
determination of the exact position and distance to the 
goal, but instead provides information only about the 
direction to the goal [20]. The olfactory map hypoth-
esis states that birds are assumed to learn windborne 
odours associated with wind directions at home. When 
displaced, they find the direction in which they need to 
fly based on local concentrations of odours. It has been 
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shown that volatile organic compounds in the atmo-
sphere are distributed along stable spatial gradients, and 
that their ratios would provide sufficient information 
for the olfactory map, even for long-distance navigation, 
such as during migration [21]. This type of map is fairly 
established for homing pigeons [20], but wild birds might 
use different strategies [17]. For example, migratory birds 
might follow an odour plume located along a migra-
tion corridor [22]. Pelagic seabirds that need to navigate 
between colonies and distant foraging grounds may learn 
the olfactory topography of the ocean, i.e. the landscape 
of patches of odours originating from islands, coasts and 
areas rich with plankton [17].

Less research has been done on acoustic navigation, 
perhaps because of lack of possibilities to obtain suit-
able data on environmental infrasound. Theoretically, 
acoustic sources could support piloting (moving between 
acoustic landmarks), beaconing (following a gradient to a 
source) or a bi-gradient map [23]. None of this has been 
confirmed, although there are first indications that infra-
sound might be used by seabirds as a navigational cue 
[24].

For more information on terminology and state of the 
art on avian navigation see review papers on definitions 
[2], compass orientation [7], positioning [12], mecha-
nisms and cross-species comparisons [5, 25], geomag-
netic navigation [6], olfactory navigation [17, 20] and 
acoustic navigation [23]. We further note that, unlike 
in neuroscience, in avian navigation literature, the term 
“navigation” often refers only to true navigation. Vec-
tor navigation or other types of navigation (e.g. pilot-
ing– moving between landmarks, beaconing– following 
a gradient to a source, path integration– keeping track of 
direction and distance travelled, etc [15]). are sometimes 
not included. In this paper we use the term navigation in 
the broadest sense, as defined earlier, i.e. as the process 
of determining and maintaining a course from the ori-
gin to a destination. This can include any type of mecha-
nism that supports this process and is not limited to true 
navigation.

Traditionally, ethologists have studied bird navigation 
with laboratory behavioural experiments [26], on their 
own or in a combination with displacement experiments 
[27, 28], where researchers observe how captive birds 
change their departure direction when cues are artificially 
changed. Recent studies use tracking data, collected with 
in-situ locational devices placed on wild migrants, such 
as GPS trackers [29, 30], radiotelemetry [31] or geoloca-
tors [32]. Tracking has provided insights on where and 
when wild birds migrate and has also been used for study 
and comparison of various types of navigation strategies. 
See for example Wikelski et al. [33] who combined track-
ing and displacement to compare olfactory and geomag-
netic navigation in migrating gulls. There are many other 

studies using a combination of displacements and track-
ing, here we only list a few examples. Two studies look at 
migration of young and adult common cuckoos [34, 35] 
and another one compares olfactory and landmark-based 
navigation in pelagic seabirds [36].

There is also substantial literature that focuses on 
physiological capabilities of how birds sense various navi-
gational cues. This includes the search for the receptor 
that could sense geomagnetic field, with three proposed 
options: the photoreceptor radical pair hypothesis [37], 
the magnetite-based sensor [38] and a possibility of using 
electromagnetic induction to sense the field [39]. We 
note that the three proposed mechanisms are not neces-
sarily mutually exclusive.

Navigational strategies may vary during the journey 
depending on encountered conditions, as birds take 
advantage of the cue that is most available at different 
times during their journey [5]. For example, the lack of 
visible landmarks during the night or overcast condi-
tions that prevents the birds to see the Sun or stars may 
lead towards increased use of geomagnetic cues [6]. 
Bingman and Cheng [5] propose a framework where 
different sensory cues and representations are used at 
different spatial scales, resulting in a multi-modal naviga-
tion decision-making process, where birds continuously 
switch between different modalities. The unsolved ques-
tion is how and when the bird changes from one mode to 
another and how/if the switch is related to the encoun-
tered environmental conditions.

Additionally, navigation decisions need to be made 
across different spatial and temporal scales. Mourit-
sen [6] proposes that long-distance navigation operates 
across three scales: a long-distance phase, a narrowing-in 
or homing phase and a pinpointing-the-goal phase. The 
long-distance phase involves navigation far away from 
the home range and relies on global cues, such as celestial 
or geomagnetic information. This phase prioritises com-
pass-based orientation either through vector navigation 
(for inexperienced migrants) or by adjusting compass 
headings based on learnt gradient maps. Narrowing-in or 
homing requires local learned maps of a variety of senses 
and environmental cues within the home range, such as 
local olfactory landscape. Finally, the pinpointing-the-
goal phase relies on visual or olfactory landmarks close 
to the destination location. The process of switching 
between global and local phases may repeat itself many 
times during the journey, for example when stopovers 
serve as intermediate targets [40]. Birds also adjust and 
re-orient during the journey from time to time (see for 
example [41–43]). Further, navigation at both global and 
local scales may be affected by local atmospheric condi-
tions, such as wind and uplift [44–46] or by high air pol-
lution [47].
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We should therefore consider navigation as a multi-
scale and multi-modal process, that may change during 
the course of migration to leverage different available 
cues, react to environmental conditions, or switch 
between coarse and fine-scale navigation strategies. 
This is however challenging to study, because these 
kinds of questions can only be answered with long-term 
(life-long) tracking data on wild migrants, along with 
co-located and contemporaneous environmental data 
[40, 48]. Leveraging these kinds of data is difficult and 
requires a new methodological approach that will iden-
tify patterns of navigational decision-making from com-
bined data.

In this paper we propose that a new data-driven 
approach, based on exploratory analysis of existing long-
term tracking data and co-located and contemporane-
ous environmental data, can support the study of avian 
navigation as a multi-scale and multi-modal process. A 
data-driven approach is increasingly common in scien-
tific disciplines which have become data-rich [49, 50], 
and complements a traditional theory-driven approach. 
A theory-driven approach is based on deductive reason-
ing process where a hypothesis is set first (i.e. “X is true”) 
and then data are collected to either confirm or reject 
the hypothesis. That is, the research question comes 
first and then data are collected to address this question 

(and only this question). In a data-driven approach, we 
start with a large amount of data that already exist and 
develop methods to identify patterns in the data (Fig. 1). 
This reverses the process, as we start with data that are 
collected widely and at large scales without a particular 
research question in mind, and then these data are ana-
lysed to come up with a research question. Consider for 
example mobile phone data: these are collected continu-
ously by mobile phone providers for millions of users, but 
can then be used in a secondary analysis to study human 
mobility [51]. An analogy to mobile phone data in move-
ment ecology are life-long tracking data of large groups 
of individuals, which are streamed live to an online por-
tal, such as Movebank [52], ready for secondary analysis. 
Typical methods for a data-driven analysis include data 
mining [53], machine learning [54] and artificial intelli-
gence (AI) [55]. Identified patterns are used to form a so-
called abductive hypothesis, which states that “X may be 
true”. This hypothesis can be interpreted into a plausible 
explanation using domain knowledge. For more informa-
tion on the distinction between how the theory-driven 
(question first) and data-driven (data first) approaches 
work in practice see the Integrated Bio-Logging Frame-
work [56].

Following trends in other fields, ecology as a discipline 
is now also starting to take advantage of data-driven 

Fig. 1  The traditional theory-driven confirmatory approach vs. the new data-driven abductive reasoning paradigm
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methods [57]. However, many ecology researchers con-
tinue to prefer more traditional confirmatory statistical 
modelling [56] and uptake of data-driven methods such 
as machine learning is slow [58]. In terms of navigation, 
there are to date only a few data-driven studies, especially 
of long-distance migrants. We list these studies in the 
second part of this paper.

We propose that, due to the recent influx of high-reso-
lution animal tracking data and readily available suite of 
environmental data (largely from satellite remote sens-
ing), it is now time to employ data-driven approaches for 
the study of avian navigation. In the rest of this paper, we 
explain how this could be done: we first discuss which 
data needed for study of navigation exist, then con-
sider data-driven methods and finally emphasise the 
importance of interdisciplinary collaborations in this 
endeavour.

Navigational Umwelt
In early 20th century, a Baltic-German biologist Jakob 
von Uexküll introduced the idea of an Umwelt [59], to 
conceptualise the problem of how living beings per-
ceive their environment and how this perception deter-
mines their behaviour. The Umwelt (a German word for 
environment) consists of the perceptual world, which 
is the part of the environment that an animal is able to 
sense, and the effector world, which is its behaviour as a 
response to the environmental conditions. Every species 
has its own unique Umwelt that is not accessible to other 
species. The Umwelt of each individual also constantly 
changes. Navigational Umwelt (Fig. 2) includes the actual 
environmental conditions that the individual experiences 
during migration, along with the navigational decisions 
based on these conditions, its internal state, motion, and 

navigation capacity [60]. These navigational decisions 
lead to movement patterns, which can be described in 
terms of trajectories and movement parameters.

Sensing the Umwelt: data sources and data fusion 
for navigational Umwelt
Recent technological advances now allow researchers to 
collect data on both the perceptual world (environmental 
data) and effector world (GPS tracking data). To under-
stand what the animal perceives and how it reacts at each 
moment, we need both long-term movement data on 
wild migrants, as well as co-located and contemporane-
ous environmental data. Here we review sources of data 
needed to study both perceptual and effector worlds.

Long-term movement data are collected widely, as 
improved tracking technologies now support life-track-
ing at increasingly detailed spatial and temporal scales 
[61, 62]. Development of re-chargeable trackers with 
solar panels means that many of these data are live-
streaming from individuals for years, resulting in a rich 
resource for study of movement behaviour. These data 
are stored in standardised form on portals such as Move-
bank [52], which, at the time of writing, contains over 
6.3  billion animal location data points from over 1400 
species. The vast majority of Movebank data are either 
openly available or available upon request for secondary 
data re-use, supporting collaborations among ecologists 
across species and geographies. This has led to significant 
advances in movement ecology, such as studying move-
ment responses to climate and environmental change in 
the Arctic [63], or discovering how human activity dur-
ing COVID-19 pandemic influenced terrestrial mam-
mals across the globe [64]. However, to date, no such 

Fig. 2  Navigational Umwelt of a migrating individual consists of its perceptual world and effector world. Perceptual world is full of potential navigational 
cues and environmental factors (e.g. wind). The individual’s response to the experienced values of these cues and factors leads to navigational decisions. 
These decisions are reflected in movement patterns as part of the effector world. In data they are represented as geographic trajectories and related 
movement parameters (speed, heading, turning angle and others)
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collaborative multi-species and geographically spread 
studies exist for avian navigation.

Environmental data are widely available from direct 
observations (such as weather data), remote sensing and 
various other geophysical data collections. As govern-
mental agencies increasingly adopt open data policies, 
their data are freely available online, for example weather 
data from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) or from national meteo-
rological agencies. Space agencies, including European 
Space Agency (ESA) and the National Aeronautics and 
Space Administration (NASA) also provide satellite data 
openly. Further potentially relevant data for the study 
of navigation, such as astronomical data on positions of 
the Sun and stars are available from open-source astro-
nomical software packages. Table 1 provides a summary 
of open data for navigational cues and environmental 
conditions.

Environmental data for sensing navigational Umwelt 
therefore exist. What is missing are methods to link these 
data together across space and time in a way represent 
environmental variables at the scale at which movement 
data are collected. This process is called spatio-temporal 
data fusion. Movement ecology tools for fusion of move-
ment and standard remotely sensed and meteorological 
data exist (e.g. the Env-Data system as part of Movebank 
[84]), as well as methods for multi-spectral optical and 
radar remote sensing data [85, 86]. Further, many of these 
datasets are now available through online platforms such 
as Google Earth Engine and can be readily linked with 
animal tracking data [87].

However, study of avian navigation requires informa-
tion on global navigational cues that are not sensed with 
standard optical and radar sensors, such as Earth’s mag-
netic field, atmospheric composition and environmental 

infrasound. Tools for linking movement data with these 
alternative data do not currently exist, with one excep-
tion, our MagGeo tool that links satellite data on Earth’s 
magnetic field to animal tracking data [88]. The reason 
for this is that these data come in unusual formats, spe-
cific to what satellites are able to observe from the orbit. 
For example, for satellite data on concentrations of atmo-
spheric pollutants (e.g. NOX, SO2), instead of presenting 
reflectance of the Earth’s surface, each pixel represents 
the total aerial column of a pollutant, from the ground 
to the top of the atmosphere. This is therefore an indi-
rect measure of the ground concentration of each gas and 
needs to be translated to the ground value using model-
ling approaches [89]. Linking such complex environmen-
tal data to movement data therefore requires substantial 
expertise in both spatio-temporal data fusion and the 
domain for which they were originally collected (e.g. 
geomagnetism, atmospheric chemistry, environmental 
acoustics).

Studying navigational decision-making: a data-
driven analysis
Once appropriate data have been identified and joined, 
the next step in a data-driven approach is the exploratory 
analysis to interrogate the data and identify patterns 
(Fig.  1). Here we outline four areas of opportunity for 
employing data-driven methods in the field of avian navi-
gation, starting from recent developments towards more 
speculative ideas.

Individual-based models and simulations
Some recent navigational studies already employ a 
data-driven approach with statistical models, but for-
mulate them in a way to focus on navigation. The main 
model type are agent-based models, where navigational 

Table 1  A non-comprehensive selection of open environmental data for navigational cues and environmental variables
Cue or variable Data description Example data sources
Sun and stars Astronomical software packages There are many, but we give some examples: R packages suncalc [65] or suntools [66] for 

position of the Sun and moon; Python library AstroPy [67] for Sun and star calculations
Visual landmarks GIS and other spatial data on 

geographical features, points of 
interest etc.

There are many sources, from global data bases (OpenStreetMap (OSM) [68], Natural 
Earth [69]) to national sources (Digimap [70] in UK)

Earth’s magnetic field Terrestrial measurements International Real-Time Magnetic Observatory Network INTERMAGNET [71]
Earth’s magnetic field Satellite measurements Data from ESA Swarm constellation [72]
Atmospheric 
composition

Terrestrial measurements Data from national air pollution networks, e.g. UK Air [73]; global WHO Air quality data-
base [74]

Atmospheric 
composition

Satellite measurements Data from Sentinel-5P [75], Aura [76], MISR instrument on Terra satellite [77], MAIA satel-
lite [78]

Environmental 
infrasound

Data on wave height, used to 
model natural infrasound

Satellite data from Sentinel-3 [79]; wave height data from ECMWF ERA5 reanalysis [80]

Environmental 
infrasound

Data on anthropogenic 
infrasound

Seismic noise data from the International Federation of Digital Seismometer Networks 
[81]; human mobility data for road traffic noise [82]

Wind and weather Meteorological and climate data ECMWF ERA5 reanalysis data of the hourly global climate conditions [80]; data from 
national meteorological agencies, e.g. UK MetOffice data [83]
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behaviour of individuals is simulated based on movement 
properties and environmental conditions. Examples 
include individual-based models [90, 91] and correlated 
biased random walks [18, 19] for geomagnetic naviga-
tion. Some olfactory navigation studies use particle and 
atmospheric models for VOC distributions to create sim-
ulations [22, 92].

When simulations assume that environmental condi-
tions do not vary across time, this can introduce bias and 
uncertainty in the model. An example are studies of geo-
magnetic navigation which employ a static model of the 
Earth’s magnetic field [90, 91]. This is a problem, because 
the geomagnetic field changes across space and over time 
under the influence of solar wind. When geomagnetic 
field is highly disturbed, such as during geomagnetic 
storms, this may affect migrating animals. For exam-
ple, we found that greater white-fronted geese have an 
increased speed and a wider range of turning angles dur-
ing geomagnetic storms [88]. This finding is supported 
by historical observations of bird’s reactions to sud-
den changes in geomagnetic activity [93, 94], but given 
the rarity of large geomagnetic storms and inability to 
observe birds during these storms, this is not something 
that could be studied in detail previously. Considering 
the field dynamics and using correct temporally changing 
values of the field in the individual-based models is there-
fore crucial as we have recently shown [18, 19].

Spatial optimisation models
Multi-modality of navigation could be defined as a spa-
tial optimisation problem. In contemporary engineering 
and technology, numerous difficult problems, which are 
typically non-linear and complex, are defined and solved 
as optimisation problems. An optimisation problem has 
three parts: an objective function which needs to be opti-
mised, constraints under which this optimisation needs 
to happen, and decision variables [95]. When the prob-
lem involves decision-making using geographic infor-
mation, this can be termed spatial optimisation [96]. A 
spatial optimisation algorithm maximises or minimises 
an objective related to a geographic phenomenon, which 
involves defining a suitable objective function with spe-
cific spatial constraints. In terms of navigation, the objec-
tive function could be a route to the target destination 
under specific environmental conditions while minimis-
ing navigational errors.

Optimisation algorithms in engineering and technol-
ogy are often defined based on animal movement behav-
iour– Amiri et al. [95] list over fifty methods that have 
been developed based on movement behaviour of diverse 
variety of mobile organisms, from ants to foxes, gorillas, 
orcas, prairie dogs, moths, hummingbirds, cuckoos and 
so on. However, the opposite knowledge transfer from 
engineering to ecology seems to be lacking, as there are 

very few studies that utilise optimisation as methodol-
ogy to study animal movement. For animal navigation in 
particular, optimisation algorithms are virtually untested, 
with exception of one study, which uses an evolutionary 
optimisation algorithm to explore a long-term change in 
geomagnetic navigation strategies [97].

Spatial optimisation algorithms have been applied to 
a variety of routing problems in robotics [98], vehicle 
navigation [99] and prediction of human movement 
behaviour [100]. For example, a study in social robotics 
[101] plans trajectories of assistive robots in a situation 
where these robots have to find the optimal path through 
a crowd of people. They propose to use a spatial optimi-
sation method, the inverse reinforcement learning (IRL), 
for this purpose. IRL is the problem of finding latent 
preferences in decision-making from observed sequen-
tial decision-making behaviour. That is, we assume that 
the behaviour of an agent is optimal and try to identify 
the preferences that led to this behaviour. In the case of 
social robots [101], the IRL algorithm learns the socially 
adaptive behaviour of moving through crowds based on 
environmental factors (density and velocity of pedestri-
ans). The resulting model is then used to generate the 
optimal route for each robot. Such approaches could be 
applied in the bird navigation context using bird GPS tra-
jectories and data on contemporaneous and co-located 
environmental conditions. Training an IRL model on 
these data could help identify the unknown preferences 
that would represent how a migrating bird uses environ-
mental conditions to follow the optimal route to the tar-
get destination.

Data mining
Since the goal of the data-driven analysis is to find nav-
igation-related patterns; data mining can facilitate the 
exploration of navigational multi-modality. Data mining 
is the process of identifying as-yet-unknown patterns and 
knowledge in data [53] and has been used in many disci-
plines for decades. For example, most analysis tasks for 
optical and radar remote sensing data are done with data 
mining methods, such as creating land use maps or seg-
menting images or videos into objects. Traditional data 
mining methods include methods for clustering, classifi-
cation and association [53]. Clustering identifies groups 
of data points with similar properties, classification 
assigns a class label to each data point based on a previ-
ously known model of grouping and association identifies 
data points which are commonly found near each other 
in the attribute space.

Clustering is used in movement analysis for identifica-
tion of different behaviours as a response to environmen-
tal conditions, specifically in cases where the number and 
type of these behaviours is initially unknown. Clustering 
algorithm is run on either movement parameters (speed, 
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acceleration), or environmental data (weather data), or 
both together. Here we give an example from human 
mobility: Brum Bastos et al. [102] use clustering of GPS 
trajectories of human commuters to identify which 
individuals respond similarly to similar environmental 
conditions. They run hierarchical clustering on a set of 
environmental conditions (thermal comfort, wind direc-
tion and speed, temperature, humidity, daylight, rainfall) 
to identify which trips are similar to each other. Trips 
are grouped into clusters, which are explored in terms 
of travel mode (e.g. walking, taking the car), to identify 
if the choice of mode corresponds to environmental 
conditions.

Contrary to clustering, which identifies groups of simi-
lar objects with no pre-conception of what those groups 
are, classification groups data points into known classes. 
This means that, when used for analysis of movement 
behaviour, the number and type of behaviours need to 
be known a-priori. An example study from movement 
ecology [103] builds classification trees from GPS and 
accelerometer data. The algorithm checks a number of 
predictor variables against given behaviours (e.g. in this 
case bird movement behaviours: no movement, flying, 
terrestrial movement) and develops a data mining model 
(a classification tree), where data points with specific 
combinations of values in predictor variables are classi-
fied as having a specific behaviour.

Association rules are less commonly used in movement 
data mining, but there is an example study [104], which 
uses this method to link animal behaviours to environ-
mental factors, with a focus on presence of other ani-
mals. They first segment GPS trajectories into individual 
behaviours and then build association rules that link each 
behaviour to geographic distance to another animal.

For more info on data mining methods in analysis of 
movement see our interdisciplinary reviews on animal 
and human movement analysis [51, 105].

In terms of navigation, one question which data mining 
might resolve is to identify when birds decide to switch 
between different navigational modalities and how the 
timing of these decisions relates to specific environmen-
tal conditions. Bingman and Cheng [5] propose two pos-
sible control processes on how this might work. One is 
that navigational strategies are employed sequentially 
and triggered by specific conditions. Another one is that 
all strategies operate in parallel throughout the journey, 
but that one (or several) dominate at different times. It is 
unclear which of the two processes operates at physiolog-
ical level, but switching between several strategies may 
lead to better navigational accuracy as a consequence of 
using multiple cues. Our on-going work uses hierarchical 
clustering, a common data mining approach, to explore 
this process. We cluster GPS points annotated with geo-
magnetic, meteorological, geographical and movement 

variables to find groups of points with similar movement 
behaviour. The goal is to identify which cues and strate-
gies dominate the flights at different points in time, how 
this differs among individuals and when these strate-
gies switch from one to another. As far as we are aware, 
this is the first attempt to use clustering for a study of 
avian navigation, in spite of this being a relatively simple 
and frequently used data mining method in analysis of 
movement.

Machine learning and AI models
A subset of data mining methods are machine learn-
ing models, which can learn from data. That is, as they 
repeatedly analyse the data during the so-called training 
process, they have the ability to adjust their own param-
eters. This adjustment process means that a model that 
has trained itself without external instruction to recog-
nise patterns in the data and is able to generalise these 
patterns to unseen data [54].

There are many machine learning models serving dif-
ferent purposes, but recently a large focus has been on 
AI models, such as artificial neural networks [55]. Neu-
ral networks are a machine learning method inspired by 
the biological neural networks. They consist of artificial 
neurons, which are processing units that take weighted 
input from several sources. The input is transformed into 
an output using the activation function (in parallel to a 
biological neuron being activated by electrical signals). A 
neural network consists of many layers of these artificial 
neurons, which are connected with each other in various 
ways, passing information from one to another not just 
in one direction, but also backwards and across the lay-
ers. If the number of layers is large, the network is called 
a deep network and the algorithm a deep learning algo-
rithm [53]. Additionally, deep learning algorithms take all 
the available raw data and automatically determine which 
attributes are relevant for analysis (this is called auto-
mated feature extraction).

After the network architecture is defined (i.e. the 
number of neurons and layers and the structure of con-
nections), it is then trained on data. A training data set 
is repeatedly fed into the network, which continuously 
adjusts the weights of each neuron (this is the “learn-
ing” in machine learning) and returns outputs. This pro-
cess continues until the output and the parameters stop 
changing. A trained network can then be used on simi-
lar data to predict the outputs– for example, in a Large 
Language Model, such as ChatGPT (which is essentially 
a large and very complicated deep neural network built 
for generating text), the training data is all the text on the 
internet, the data to be analysed is the question that the 
user poses and the output is artificial text that is statisti-
cally similar to a related pattern in the training data.
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There are different types of neural networks solve spe-
cific problems. Image processing uses convolutional neu-
ral networks (CNNs) [53]], which take images as input 
and decompose each image into smaller subsections (one 
into each neuron) and apply filters to each subsection. 
Each sub-section results are then re-combined using 
convolution to build a new representation of the image. 
This process can be used to recognise objectsin the image 
data. CNNs have found their way into movement ecol-
ogy problems which require handling large data sets 
of images, such as identifying individuals from camera 
trap images [106] and videos [107]. Another example are 
CNNs that use drone-recorded videos to automatically 
track the location and body posture of free-roaming ani-
mals in a 3D landscape [108].

Another type of neural networks in movement ecology 
are deep learning models for analysis of trajectories. They 
are used for comparative analysis of trajectory segments 
[109] to distinguish characteristic movement patterns of 
indviduals. They are also used to infer behavioural pat-
terns from simpler movement data, for example diving 
behaviour from GPS trajectories [110] or dynamic body 
acceleration from depth data [111]. This solves the prob-
lem of having to fit costly additional sensors, such as a 
time-depth recorders or a high-resolution accelerometer.

We are not aware of any applications of neural net-
works in navigation studies, but here we propose some 
ideas of how this could be done based on state of the 
art developments of these models in analysis of human 
movement.

In human mobility, deep learning is commonly used 
for both trajectory generation and next-location predic-
tion. Next-location prediction [112] identifies spatial and 
temporal patterns in historical mobility data, along with 
social and environmental factors influencing decisions 
that led to these patterns. These methods, particularly 
deep learning, capture long-range temporal and spatial 
dependencies and could model the complex navigational 
decision-making of migratory birds. Trajectory genera-
tion [112] creates simulated trajectories that statistically 
replicate key mobility features (distance, speed). This 
is typically used for simulating urban mobility under 
hypothetical future scenarios, including introduction of 
new infrastructure, natural disasters, or epidemics. Gen-
erative deep learning models [112, 113] can capture the 
non-linearity and chaotic nature of movement decision-
making, and create realistic trajectories. In terms of avian 
navigation, these models could be used to forecast migra-
tion routes under specific environmental conditions.

One reason that machine learning and AI methods 
are not yet employed for the study of navigation may be 
the size of training data. AI models require large data 
sets to be trained. Collecting animal tracking data on a 
large scale is still more costly and difficult than tracking 

humans [51] and no single navigation study may be able 
to generate sufficient data for AI use. Instead, what is 
needed is data sharing within large collaborations, with 
interdisciplinary involvement of both ecologists and data 
scientists. This type of collaboration is however yet to 
be realized within navigational studies. There are prec-
edents for such collaborations in movement ecology, for 
example, during COVID-19 pandemic, the International 
Bio-logging Society (IBS) issued a call to scientists to 
contribute data from their on-going studies to explore 
the effect of the decrease in human activity on wildlife 
[114]. Hundreds of researchers from across the globe 
answered the call and this has led to a number of multi-
species multi-study analyses [64, 115] that would not 
have been possible otherwise. Recently, the IBS has for-
malised widespread global data integration through pro-
posing standards and public archiving of bio-logging data 
[116]. There is an opportunity for navigation researchers 
to do the same.

Bringing together researchers from ecology and data 
science and re-using tracking data from many studies 
would allow for comprehensive data-driven multi-species 
analyses, not just for birds but also for other migratory 
species, such as marine animals (turtles [117], whales 
[118], seals [119]), terrestrial mammals [120], bats [121], 
fish [122] and insects [123]. Using AI and other data-
driven methods on these massive, linked datasets would 
allow a holistic study of animal navigation in the wild; 
exploring similarities and differences between species 
and leading to a better understanding of the incredible 
ability of long-distance navigation.

Conclusions
We live in a world that is increasingly data rich and where 
many things are sensed. These data offer an unprece-
dented opportunity to better understand our world and 
its living beings. Many scientific disciplines have already 
started taking advantage of these vast data resources and 
have embraced new methodological approaches that look 
for patterns and knowledge in the data. It is now time 
for research on avian navigation (and navigation of other 
species) to do the same. In this paper we have shown 
that data needed for this endeavour already exist and are 
widely available. We have outlined four areas that pro-
vide exciting possibilities for how a data-driven approach 
with these data could expand the study of complexities of 
animal navigation beyond its current limitations. This is 
a call to the navigation community to start participating 
in the data-driven revolution and discover what data can 
reveal about the amazing navigational ability of migrating 
animals.
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