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How do red foxes (Vulpes vulpes) explore 
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Abstract 

Background  Many animals must adapt their movements to different conditions encountered during different life 
phases, such as when exploring extraterritorial areas for dispersal, foraging or breeding. To better understand how ani-
mals move in different movement phases, we asked whether movement patterns differ between one way directed 
movements, such as during the transient phase of dispersal or two way exploratory-like movements such as dur-
ing extraterritorial excursions or stationary movements.

Methods  We GPS collared red foxes in a rural area in southern Germany between 2020 and 2023. Using a random 
forest model, we analyzed different movement parameters, habitat features—for example landclasses and distances 
to linear structures—and time variables (season and time of day) within red fox exploratory, transient and stationary 
movement phases to characterize phase specific movement patterns and to investigate the influence of different 
variables on classifying the movement phases.

Results  According to the classification model, the movement patterns in the different phases were characterized 
most strongly by the variables persistence velocity, season, step length and distance to linear structures. In extrater-
ritorial areas, red foxes either moved straight with high persistence velocity, close to anthropogenic linear structures 
during transient movements, or more tortuously containing a higher variance in turning angles and a decrease 
in persistence velocity during exploratory-like movements. Transient movements mainly took place during autumn, 
whereas exploratory-like movements were mainly conducted during winter and spring.

Conclusion  Movement patterns of red foxes differ between transient, exploratory and stationary phases, reflecting 
displacement, searching and resident movement strategies. Our results signify the importance of the combined effect 
of using movement, habitat and time variables together in analyzing movement phases. High movement variability 
may allow red foxes to navigate in extraterritorial areas efficiently and to adapt to different environmental and behav-
ioral conditions.
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Background
Animals may exhibit large-scale seasonal movements in 
response to changing resource availability or environ-
mental conditions such as during migration [1], or they 
may move locally for daily foraging within a home range 
[2–5]. Such movements may occur along known routes 
or paths [6, 7]. However, sometimes animal movements 
may be exploratory in nature i.e. outside of a known area 
or home range [8], such as during natal dispersal when 
searching for a place to settle or for resources or mat-
ing opportunities in extraterritorial or completely novel 
areas [5]. Thus, movements can be differentiated into 
stationary or extraterritorial movements. Extraterrito-
rial movements are risky as animals might face rather 
unpredictable encounters with vehicles [9, 10], territorial 
individuals [11], or predators [12]. They might also have 
to search long or far to find food or shelter, resulting in 
an increase in energy consumption [13]. Yet, despite the 
risks and the costs associated with movements outside 
a home range, such movements are crucial to gather 
information [14, 15], to reach novel areas and to expand 
or adjust home range areas to more favorable habitats, 
resulting in increased fitness [16]. As animals cannot 
rely on their cognitive maps when navigating these novel 
areas, they must instead actively sample their environ-
ment by sensory information [17], which will influence 
their movement patterns [2, 18]. Thus, animal movement 
patterns in extraterritorial areas are likely to differ from 
movements in settled areas, hereafter defined as within 
home range movements (stationary phase) [19, 20].

Extraterritorial movements can be differentiated as 
exploratory movements outside settled areas including 
a return (exploratory phase) or as one-way movements, 
where individuals leave a settled area to move to a new 
area, as during dispersal (transient phase). Roshier et al. 
[8] showed that individuals often move fast and directed 
when outside their home ranges to minimize risk. These 
fast and directed movements are designed for displace-
ment [21] and mainly observed for movements between 
patches, which reflects transient movements [22]. This 
movement strategy enhances energy savings during the 
transient phase of a dispersal event [23], while also allow-
ing individuals to quickly pass occupied territories or 
risky areas, which has an influence on their movement 
pattern, even without direct encounters of the territory 
holder, for example a conspecific [24].

During the exploratory phase, on the other hand, 
movement patterns may be characterized by strate-
gies to collect new information about the environment, 
resources and conspecifics [25]. This can reflect a search-
ing behaviour, where individuals search for mates or look 
for foraging opportunities. Searching movements might 
result in high levels of returning to known areas [21], and 

include many directional changes, slower movements 
and smaller step lengths, similar to that represented by 
Lévy walks or correlated random walks [26]. During 
the exploratory phase, animals may move linearly until 
they locate a resource, at which time they may continue 
with an area restricted search, changing their movement 
pattern to a more tortuous path, until the resource is 
depleted [27]. Exploratory movements might also be con-
ducted for information gathering or to explore the area 
before dispersal [28, 29].

Movement patterns are further influenced by external 
factors. In the surrounding environment, animals select 
for their optimal habitat to maximize survival and fit-
ness [30–34]. Different habitat types, habitat features 
and structures promote different movement patterns [19, 
31, 35]. Linear structures facilitate faster movement, as 
shown for dispersing male brown bears (Ursus arctos), 
who moved faster when closer to small forestry roads and 
larger public roads in Sweden [36]. Habitat selection may 
also be influenced by temporal patterns such as diurnal-
ity or seasonality. For example, deer species show diurnal 
habitat preferences where they select more forested/cov-
ered areas during day than during night, when they pre-
fer open habitats [37, 38]. Season can further influence 
movement patterns, since resources or density capaci-
ties in space might change between seasons [39, 40]. 
Thus, movement patterns in different movement phases 
might be influenced by habitat features and timing. Dis-
persing individuals may select for habitat that facilitates 
more direct movement, while during exploratory-like 
movements animals may prefer to move in open areas to 
enhance searching efficiency. Taking movement, habitat 
and timing variables together into account, we want to 
analyse in this study how these variables characterize the 
movement patterns in the movement phases exploratory 
(including exploratory-like movements), transient and 
stationary.

Red foxes (Vulpes vulpes) are one of the most widely 
distributed terrestrial species across the globe, repre-
senting a very adaptable mammal species [41–43]. As a 
generalist, red foxes prefer spatially heterogeneous land-
scapes with a high diversity in habitat types, thus a high 
distribution of vegetation features, allowing them to 
utilize a wide variety of prey, food resources and shelter 
opportunities [44, 45]. Subadult red foxes disperse during 
autumn [46]. In highly fragmented landscapes, red foxes 
are known to follow linear structures [47].

In this study, we use the red fox as our model species 
to investigate movement patterns, habitat preferences 
and interactions between timing, movement and habi-
tat features during exploratory, transient and stationary 
phases. Investigating how red foxes move in extraterrito-
rial areas will assist in improving our understanding of 
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the adaptability and range expansion capabilities of red 
foxes, which is important due to its potential for disease 
spread [48] and its impact on other species through pre-
dation and competition [49, 50]. Specifically, we sought 
to understand how different movement, habitat, and tem-
poral (e.g., diurnality and seasonality) variables described 
the exploratory-like, transient and stationary movement 
phases of red foxes. To do this, we used data from GPS-
collared red foxes in Germany. We analyzed red fox 
movement patterns in a landscape heavily dominated and 
altered by human land use to explore how foxes moved 
during these different movement phases. We predicted 
that

	(P1)	 during transient movement phase, movement 
patterns will be characterized by more directed 
movements (persistence velocity, step length 
and turning angle), compared to stationary and 
exploratory phases;

	 (P2)	 during exploratory phase consisting of explora-
tory-like movements, movement patterns will be 
characterized by a smaller step length and a more 
tortuous path, compared to transient and station-
ary phases;

	(P3)	 seasonal differences will occur between transient 
and exploratory-like movements. Thus, transient 
movements will occur more frequently during 
autumn, when subadult individuals are known to 
disperse and exploratory movements will occur 
more frequently during spring, when individuals 
search for resources.

Material and methods
The presented study was conducted in a rural area in 
South Germany (47° 51′ 18.0″ N 9° 32′ 11.8″ E) com-
prising 142,400 hectares. The region is located in the pre-
Alpine hillscape and moor landscape, consisting of small 
structured cultivated agricultural or greenland fields and 
patterns of forest with spruce (Picea abies) as main tree 
species, representing a heterogeneous landscape [51]. 
Agricultural land use is mainly arable farming, grass-
land and livestock farming [52, 53]. The annual average 
temperature is 8.5  °C and the average annual precipita-
tion amounts to 941 mm [54]. We equipped 26 red foxes 
[19 males: 4 adults, 15 subadults; 7 females: 2 adults, 5 
subadults, Table  2 in appendix] with GPS-collars (‘Col-
lar 1C’; 170  g, e-obs, Grünwald, Germany and ‘Tellus 
ultra light’, 213 g, Followit, Lindesberg, Sweden) between 
October 2020 and March 2023. Red foxes were trapped 
in live traps (wooden box traps, concrete pipes) between 
1st September and 15th February each year, to ensure 
that no adult animal was kept away from offspring during 

denning season and that subadults were large enough 
to be equipped with a GPS-collar. Traps were equipped 
with a remote alarm system (Trapmaster, EPV Electron-
ics GmbH, Germany) sending a message via mobile net 
as soon as the trap closed. Each closed trap was checked 
immediately, latest after dawn. Bycatches were released. 
Red fox individuals were immobilized as described by 
[55]. Applied dose of anesthetics composed of 0.03  ml/
kg ketamine (Anesketin, Dechra) and 0.08 ml/kg medeto-
midine (Sedator®, Dechra) was injected intramuscularly. 
Additionally, sex, age, body weight and size was noted 
(see Table 2). Age was determined based on the state of 
the teeth and defined as subadult (< 1  year) and adult 
(> 1 year) [56–59]. After deployment of the GPS-collars, 
the antagonist Atipamezole (Atipam®; Dechra) of the 
same volume as the Sedator was injected. All procedures 
were accepted by the ‘Regierungspräsidium Tübingen’ 
under the animal protection law, registered as LAZ4/19G 
and supervised by veterinarians.

Collars were programmed to collect a GPS location by 
activity of the collared animal every 10 min and every 1 h 
when inactive (e-obs) or every 20 min during night and 
every 3 h during day (Followit). Thus, the time between 
two fixes of the e-obs collars depended on the activity of 
the individual. We collected 248,338 GPS points in total. 
We first removed spatial outliers using QGIS version 
3.22.12 [60] (for detailed information see appendix ‘Out-
lier removal’) and excluded all GPS locations taken within 
the first 24 h to exclude trapping bias [61]. Four individu-
als that collected less than one month GPS data were 
excluded from further analyses (Table 2). This resulted in 
22 individuals for further analysis. For each individual, we 
calculated movement tracks, where each pair of subse-
quent locations lies within a temporal range (dt) between 
10 and 60 min, using the package amt [62]. We decided 
on an interval for dt between 10 and 60 min as 10 min 
corresponds to the minimal fix interval and 60 min mini-
mized the total number of locations discarded. If the 
temporal distance exceeded the threshold of 60 min the 
next GPS location became the beginning of a sequence 
of subsequent locations within the dt. However, in the 
case that dt to the following GPS-location also exceeded 
60 min, these locations were discarded. Dt for less than 
10% of all subsequent locations exceeded 60  min. This 
left 120,359 GPS points (see appendix Table 2 for further 
details with time of data collection per individual). Data 
analysis was conducted with R version 4.1.3 [63].

To examine exploratory-like and transient move-
ment patterns and habitat preferences of red foxes, we 
separated the movement paths of all individuals into 
exploratory-like, transient and stationary movement 
phases (Fig.  1, Fig.  5). Identifying transient and station-
ary phases in mammals using movement data remains 
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very challenging [64–66]. The variability of movement 
data [64] makes it nearly impossible that a single method 
identifies correctly all possible segmentation parts in a 
movement path and thus reliably identifies transient and 
stationary phases [67]. For assigning the transient (T) 
and stationary phases (S1, S2) (Fig.  5) we used the clas-
sification of Oehler et  al. [68] that is based on (a) the 
detection of early warning signals [69, 70] using times 
series of the net squared displacement (NSD—[71]) and 
(b) the evaluation of early warning signals via the appli-
cation of a k-means cluster algorithm provided via the 
R-package marcher [72]. According to Oehler et al. [68], 
eight individuals were classified as dispersers. We classi-
fied the transient phase as the movement phase in a dis-
persal event, which began with leaving a stationary state 
(S1) and finished when arriving at a second stationary 
state (S2). The stationary states belonged to the station-
ary phase. The analysis by Oehler et  al. [68] suggested 
that three other individuals were probably caught during 
the transient phase and one individual stopped collecting 
data probably during the transient phase. Since we were 
able to identify two distinct spatial clusters for those four 
individuals we used the time from beginning of data col-
lection until start of S2 or end of S1 until stop of data col-
lection as transient phase. Thus, eight dispersers and four 
individuals caught during dispersal, resulting in twelve 
out of 26 red fox individuals experiencing transient and 
stationary movement phases during data collection. We 
continued our analysis with these twelve individuals. We 
further defined a GPS point as exploratory-like when the 
x and y coordinates of the GPS point or the distance to 
the first location (net squared displacement, NSD) was 
outside of the 98.5% quantile or 1.5% quantile during the 
stationary phases (Fig.  1). For detailed explanation see 
appendix ’Classification of exploratory movements’. Thus, 
we ensured that the movement trajectories were outside 

of the stationary area (S1 and S2) but included a return 
to the stationary area. Consequently, the timing of the 
exploratory GPS points occurred within the timespan of 
the stationary phase. For the calculation of the x/y and 
NSD distribution in S2 we used the first four weeks of 
location data, since data collection was sometimes multi-
ple months long in S2. We further included the condition 
that every point in S1 was stationary, (1) when the point 
was less than 1 km away from the trapping point and (2) 
when during the transient phase the animal returned 
to the trapping location (NSD < 1  km). This resulted in 
segmented movement tracks of each individual into sta-
tionary, transient and exploratory-like movement phases 
(Fig. 1, Fig. 5). We consider S1 and S2 together in the sta-
tionary phase.

To identify movement patterns within the classified sta-
tionary, exploratory-like and transient movement phases, 
we analyzed influences of movement variables, habitat 
features and timing on the movement patterns in the spe-
cific phases. We calculated turning angle (ta), step length 
(sl) and persistence velocity (pv) using the movement 
tracks of the twelve individuals with the amt package 
[62]. Step length neither increased nor decreased sys-
tematically for dt ranging between 10 and 60 min (Fig. 4). 
The variable pv was calculated as speedi*cos(tai) for each 
individual i. These movement variables have been used 
by other studies to identify movement [67, 73, 74], and 
thus seemed appropriate to reflect movement patterns in 
the movement phases. The variable turning angle reflects 
how straight or tortuous the path might be, step length 
shows the distance moved and speed is the distance 
traveled in a given time interval between two relocations 
[67, 73]. Using the variable speed we further calculated 
the persistence velocity (pv = speedti*cos(tati), where ti is 
each timestamp in the timeseries data), the tendency of a 
movement to persist in a certain direction [67, 73, 74]. To 

Fig. 1  Visualization of GPS location data showing movement parameters of a single red fox male. The left box shows a time series of net squared 
displacement (NSD) from an initial starting position and the right box the x and y coordinates (in UTMS). The stationary phase (S1 and S2) is shown 
in blue (S1) and yellow (S2), the transient phase in red and exploratory phase in green. The x and y coordinates of all individuals in the stationary 
and transient phases are visualized in Fig. 5
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link movement data to habitat features, we used satellite 
data for landscape classification derived from ESA world 
cover maps 2021 [75], resolution 10 m × 10 m. The com-
position of the vegetation in the study area is made up by 
41.5% forest, 25.6% Greenland, 25.5% agricultural fields, 
5.4% anthropogenic structures and 2% belonging to other 
vegetation types such as water, wetland and sparse veg-
etation (100% minimum convex polygon (MCP) area 
plus 7 km buffer). The number of GPS points per habitat 
class is shown in Table  3 in the appendix. Additionally, 
we used a layer for road and trail networks and the river 
system [76], to calculate the distances to the features in 
QGIS (GDAL Proximity) with 1 m × 1 m resolution. The 
variable linear anthropogenic structures included the 
minimum distance to either state roads, federal highways 
or railways, combining the larger linear structures into 
one variable. The following variables,  listed in Table  1, 
were extracted from the landscape maps:

To identify co-linearity of habitat variables, we used 
the Spearman correlation coefficient. We did not exclude 
any habitat layer, since all correlation values were smaller 
r < 0.4, indicating a low correlation between each other 
[77]. Afterwards, we extracted the appropriate habitat 
covariates at the end of each movement step using amt 
package. To include time variables, since dispersal move-
ments are typically undertaken by subadults during 
autumn, we included the variable season (spring: March, 
April, May, summer: June, July, August, autumn: Sep-
tember, October, November, winter: December, January, 
February) in the analysis. We further included a time of 
day variable (day/night) to test if one movement phase is 
more likely during daylight or nighttime hours, while 16% 
of the GPS fixes were collected during the day and 84% 
during the night.

To analyze which variables are most predictive of the 
stationary, transient and exploratory phases, we con-
ducted a classification based random forest model [78]. 
Relationships between movement patterns and habitat 
features or timing are intricate and can be nonlinear in 

nature, therefore, we applied a random forest model using 
randomForest package in R [78]. Random forest models 
are non-linear, non-parametric and do not require data 
assumptions in variable distributions. Furthermore, ran-
dom forest models provide high accuracy in predictions 
[79] and it is possible to use all variables together in one 
model to evaluate the relative importance of different 
variables and how the variables’ values differ between 
the movement phases. However, a random forest model 
is vulnerable to imbalanced data with feature analysis. 
Our data was class imbalanced with a different number 
of locations per phase, where the stationary phase was 
the majority class (Number of GPS points per phase: sta-
tionary = 32,246; transient = 2372; exploratory = 7008). 
To minimize the effect of the minority class in the model, 
since a random forest is not able to account for differ-
ences in the sampling regime according to individuals, 
we selected ten steps per individual per phase and boot-
strapped the data 120 times with replacement to reach a 
distribution of 1,200 data points per individual and per 
phase. Even though random forests automatically sam-
ple the data used for each tree with replacement, these 
techniques did not account for imbalanced data due to 
a different number of GPS-locations per individual and 
phase. Our objective was a balanced data set according to 
both the movement phase and the individual. With this 
dataset, including data from all twelve red foxes, we con-
ducted a random forest model with 300 trees, using our 
movement, habitat and timing variables as predictor vari-
ables. This included in total eleven variables: landclass, 
distances to different habitat types (see Table  1), move-
ment parameters (sl, ta, pv), season and time of day, and 
movement phases containing three classes: ‘exploratory’, 
‘transient’ and ‘stationary’ as target variable. Three hun-
dred trees seemed appropriate, as testing showed that 
the out of bag (OOB) error fluctuated around the same 
value while adding additional trees after 150 trees. Ran-
dom forest is an ensemble model consisting of multiple 
decision trees, each trained on a different subset of the 
input data, drawn through bootstrapping. The observa-
tions not used for training a particular tree are referred 
to as OOB data for that tree. The model’s error rate was 
calculated by validating predictions from each of the 150 
trees on their respective OOB data. In this random for-
est model, each tree was trained on approximately 64% 
of the input observations, while about 36% of the obser-
vations were left out as OOB data for model validation. 
Additionally, we applied statistical methods to calculate 
class-specific error rates, providing deeper insights into 
the model’s accuracy. As splitting criterion at each node, 
we used three variables randomly sampled from the pre-
dictor variables (eleven variables, which is the square 
root of the number of predictor variables). We combined 

Table 1  Land classifications (n = 7) according to ESA world 
cover maps 2021 [76] and distance variables (n = 5) reflecting 
the Euclidian distance to linear structures or flowing waters, 
conservation areas, district or agricultural roads

Land classification types (ESA):
1. Tree cover
2. Greenland
3. Agricultural field
4. Settlement
5. Sparse Vegetation
6. Water
7. Wetland

Distance variables:
1. Distance to flowing waters
2. Distance to protected areas
3. Distance to district road
4. Distance to agricultural road
5. Linear anthropogenic structures:
 ✓ Distance to state roads
 ✓ Distance to federal highways
 ✓ Distance to railways
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five random forest objects into one forest model, which 
had in the end 1,500 trees to exclude the chance of a 
bias by subsampling our original data. We calculated 
the minimal depth of the predictor variables of the ran-
dom forest by using the package randomforestExplainer 
[80]. Minimal depth is a measure showing the num-
ber of nodes required to split the data into their target 
classes when the variable was used at a tree node. Thus, 
it shows how important each variable is to split the for-
est to achieve homogeneity among the target classes. The 
lower the value the higher the robustness of the variable. 
Only single-variable feature importance was considered. 
Interactions between movement and habitat parameters 
were not considered as the classification of the random 
forest according to the OOB error was already very con-
vincing. To visualize the relationship between the pre-
dictor variables and the probability of target classes, we 
plotted partial dependence plots (PDPs) using the pack-
age pdp [81] for each predictor variable of the random 
forest model, while holding values of other variables at 
their respective means. The PDPs show the probability of 
a movement being assigned to exploratory, transient or 
stationary phases dependent on the values of the predic-
tor variables.

Results
The movement, habitat and timing parameters used as 
predictor variables in the random forest model classi-
fied the movement phases with 98.04% accuracy, thus 
the OOB estimate of error rate for the combined random 
forest model was 1.96 (exploratory = 1.2, transient = 0.7, 
and stationary = 4), see confusion matrix in Fig.  6 in 
the appendix for detailed information about number of 
observations correctly or incorrectly classified by the 
model for each phase. The variable ‘persistence velocity’ 
had the highest influence on the correct classification of 
the three phases, followed by the variables ‘season’, ‘dis-
tances to protected areas’, ‘step length’ and ‘distance to 
linear structures’ (Fig. 2).

Looking closer at the influence of movement vari-
ables, habitat features and day-night differences on the 
transient movement phase, the PDPs of the random for-
est model show that the probability to move in the tran-
sient phase increased with a higher persistence velocity, a 
turning angle around 0 and higher step length (Fig. 3A–
C). The probability for a GPS location to be predicted as 
transient increased for a lower distance to linear struc-
tures (Fig.  3D). This confirms our prediction P1. Dur-
ing exploratory-like movements, red fox movements 
were characterized by a more tortuous path resulting in 
a higher probability to be exploratory with decreasing 
persistence velocity (Fig.  3C) and a constant probability 
of being exploratory across all turning angles (Fig.  3B). 

This confirms our prediction P2 partially. Contrary to our 
prediction P2, the PDPs show that the probability to be 
exploratory increased with step length (Fig. 3A), as with 
transient movements. The probability to be predicted 
as exploratory-like movement increased with distance 
to linear structures until a threshold of two kilometers 
(Fig.  3D). Seasonal differences are shown in the PDP 
(Fig.  3F), where the probability of being in a transient 
phase doubles in autumn, and the probability of being 
exploratory increases in spring, which confirms our pre-
diction P3, that seasonal differences will occur between 
transient and exploratory-like movements. The results of 
the PDP of the landclass variable show that the heteroge-
neous landscape is reflected in the habitat selection for 
all movement phases, by similar preferences of different 
habitat types (Fig.  3E). The probability to be explora-
tory or transient increased when individuals moved 
closer to protected areas, in comparison to stationary 
phase (Fig.  3G). Comparing transient and exploratory-
like movements, the probability of transient movements 
was higher when red foxes oriented closer to protected 
areas. In contrast, the probability to be predicted as tran-
sient increased with distance to streams (Fig.  3H). The 
probability to be predicted as stationary phase increased 
with small step length, a variable turning angle pre-
ferred around − 2 and + 2 rad with a persistence velocity 
around 0 and an increase in distance to linear structures 
(Fig.  3A–D). The probability to be predicted as station-
ary did change slightly between seasons with a higher 
probability in spring and a lower probability in autumn 
(Fig. 3F).

Taking a more detailed look at the PDPs revealed a 
higher estimated probability for being stationary (B, 
C, H). In contrast to other variables, nearly equal prob-
abilities for all three phases were observed for the vari-
able Time which signifies no influence of the variable in 
determining species movement phases, as also supported 
by its lowest ranking observed in the variable importance 
graph.

Discussion
In this study we highlighted that different movement 
phases of red foxes (i.e. stationary, exploratory, transient) 
can be described not only according to movement param-
eters (turning angle, step length, persistence velocity) but 
also according to information about habitat parameters 
(distance to protected areas, distance to anthropogenic 
linear infrastructure) and timing of the movement (sea-
son). Movement patterns of red foxes differed between 
transient, exploratory and stationary phases, reflecting 
displacement or searching behavior in extraterritorial 
areas and habituated, daily movements in a settled area. 
The variables with the highest differentiations between 



Page 7 of 17Oehler et al. Movement Ecology            (2025) 13:4 	

the phases and thus of most importance for reflecting the 
given classification of exploratory, transient and station-
ary phases were ‘persistence velocity’, ‘season’, ‘distances 
to protected areas’, ‘step length’ and ‘distances to linear 
structures’. Individually, the predictor variables had a 
probability of less than 50 percent to predict any of the 
movement phases, with the exception of the variable ‘dis-
tance to protected areas’ which had a probability greater 
than 50 percent for predicting a stationary phase within 
a distance between 1.3 and 1.6 km (Fig. 3). This signifies 
the importance of the combined effect of using move-
ment and habitat parameters together that results in a 
very low class error rate and in the accurate classifica-
tion of the movement phases [31]. Random forest models 
are a robust method with low generalization error, low 

correlation between classifier and with a high classifica-
tion strength [78]. The high classification accuracy of our 
random forest model resulted from the balanced resam-
pled data, where we excluded bias of uneven classes.

Transient phase
During the transient phase, our results show that red 
foxes move with a high persistence velocity and an 
increased step length indicating continuous straight 
movements. This is in line with other studies focusing on 
dispersal movements, where movement patterns reflect a 
fast and straight movement to bridge long distances in a 
short time [20, 21]. By moving straight and fast, energy is 
saved and risk to encounter unpredictable events reduced 
[23, 82]. A study by Whittington et al. [83] revealed that 

Fig. 2  The variables of most importance for the classification of the exploratory, transient and stationary phases shown with decreasing 
importance. Minimal depth values indicate how important each variable is to split the given data into homogeneous classes in the random forest. 
The lower the value the higher the robustness of the variable. Mean of minimal depth is mean of minimal depth calculated over all the trees grown
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carnivores increased their speed when near towns and 
roads. Our results indicated, that red foxes moved closer 
to anthropogenic linear structures during the transient 
phase. Distance to anthropogenic linear structures rep-
resent distances to state roads, to federal highways and 
to railways. Thus, moving closer to anthropogenic linear 
structures is likely a strategy employed that enhances 
fast and straight movements and thus increases dis-
placement. Alternatively, fast movements along linear 
structures increases the hunting behavior and the hunt-
ing efficiency, as studied on movements of grey wolves 

(Canis lupus) [84, 85]. However, moving closer to linear 
structures might also be a response to the distribution of 
habitat features in our area, where being more active dur-
ing transient movements, increases the chance of reach-
ing or crossing linear structures.

Exploratory phase
During the exploratory phase, movement patterns are 
defined by a tortuous path with decreasing persistence 
velocity and high variations in turning angles. This 
describes a searching behavior [26], which could be 

Fig. 3  Partial dependence plots depicting the probability of three target classes, the movement phases, across the range of values of movement 
variables (A-C), habitat variables (D/E/G/H) and time variables (F/I) when other variables were kept constant. It shows the probability a location 
is associated to the specific target class dependent on the variables. Time: 1 = night, 2 = Day, Season: 1 = winter, 2 = spring, 3 = summer, 4 = autumn, 
Landclass: 1 = Tree cover, 2 = Greenland, 3 = Agricultural field, 4 = Settlement, 5 = Sparse Vegetation, 6 = Water, 7 = Wetland, Distance variables 
to landscape features (D/G/H) are shown in meters, as well as step length (A). Turning angle is shown in radian (B). The rugs display the data 
distribution. The findings for the variable Time represent the nature of the training data
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conducted due to no a priori knowledge about resources 
while exploring extraterritorial areas [26]. Contrary to 
our prediction P2, a higher step length was slightly more 
likely to be predicted as exploratory, same as transient 
movements. The fact that movements during exploratory 
phase were characterized by a rather large step length 
might be due to enhancing foraging and exploration effi-
ciency by fast movements as a risk mitigation to avoid 
conspecifics and risky encounters [9–11] and to gather 
information about the surrounding [25, 29]. The prob-
ability to be predicted as stationary increased with small 
step lengths. This is in line with the study by Soulsbury 
et  al. [20], where extraterritorial movements included 
longer distances travelled with a higher intensity of 
search and thoroughness than movements inside a home 
range.

Space and time
Habitats including streams can represent areas with high 
vegetation and many shelter opportunities. Protected 
areas can represent a safe area with the potential to 
escape anthropogenic disturbances [86]. The probability 
to be predicted as exploratory or transient was high when 
individuals moved closer to protected areas, which could 
be due to the higher risk exposure during extraterritorial 
movements.

Individuals moving closer to streams had a higher 
probability of being predicted as stationary, which might 
be due to the distribution of individuals in our study 
area, whereas the probability of being classified as tran-
sient increased as distance to streams increased. Avoid-
ing the territories of other, un-collared individuals, could 
lead to transient individuals moving in areas further from 
streams [24]. Peaks in the PDPs, for example the higher 
probability to be predicted as stationary with a distance 
of 1  km and 5  km away from protected areas, might 
reflect the landscape pattern and thus, how protected 
areas are distributed within our study area. Accordingly, 
we expect that differences of the probabilities shown in 
the PDPs (Fig. 3) related to distances towards habitat fea-
tures rather than  present species specific preferences in 
the vicinity. However, for large distances further away 
than one or more kilometers, the probabilities likely 
reflect also the landscape. In this context, it should be 
mentioned that the probabilities of each phase are rela-
tive to the probabilities in the other phases. This means 
that the probabilities for the three phases in the PDPs 
always sum to one.

Red foxes show evidence of all movement phases 
within all landclasses. There is a small tendency that red 
foxes prefer forest patches during transient phase and 
open areas as greenland fields during exploratory phase. 
However, these differences in probabilities are roughly 

two percent. The heterogeneous distribution of the land-
classes per movement phase might result from the broad 
classification of the ESA satellite data within only seven 
categories. However, this also likely reflects the assumed 
spatio-temporal behavior of a generalist and emphasizes 
that red foxes use different landscape types in heteroge-
neous areas, where field sizes are small and diverse [44]. 
While red foxes are typically a crepuscular and nocturnal 
species [87], our results show that the different move-
ment phases were independent of the time of day. Season 
is of high importance in distinguishing the movement 
phases. Transient movements mainly took place during 
autumn, which reflects the dispersal timing of subadult 
foxes [20]. Exploratory-like movements were mainly con-
ducted during winter and spring, which might be due to 
mate searching and the breeding season of red foxes [20].

Conclusion
In the presented study, we used movement data with a 
high temporal and spatial resolution to provide insights 
into how an adaptable generalist species such as the red 
fox explores extraterritorial areas. In the context of envi-
ronmental change such as climate change, anthropogenic 
habitat alterations, and the depletion of natural habitat, 
it can be expected that an increasing number of species 
might have to navigate extraterritorial and completely 
novel areas during their lifetime [88, 89]. In the future, 
species communities could increasingly consist of gen-
eralists, whereas the number of specialists will decrease 
[90, 91], as generalists will profit from their behavio-
ral and dietary flexibility [92–94]. Our results further 
contribute to a better understanding of how a general-
ist species, the red fox, moves in different movement 
phases and how these movement patterns are influenced 
by habitat and time variables. Furthermore, our results 
signify the importance of the combined effect of using 
movement, habitat and time variables together in analyz-
ing movement phases. In extraterritorial areas, red foxes 
either move more tortuously with multiple reorientations 
during exploratory-like movements reflecting a searching 
behavior, or they focus on quick displacement by mov-
ing straight with high persistence velocity during tran-
sient movements. High movement variability may allow 
red foxes to navigate in extraterritorial areas efficiently 
and to adapt to different environmental and behavioral 
conditions.

Appendix
Outlier removal
To exclude potential outliers in our dataset, we first 
removed GPS points which received less than four sat-
ellites [95] (Fig.  4). Second, we removed all GPS points 
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that were not located in the federal district of Ober-
schwaben, since the collared red foxes stayed inside the 
region Oberschwaben (see appendix Fig.  5). Thus, all 
points outside the district could be treated easily as outli-
ers. Third, when two subsequent locations have had the 
same timestamp or were located at identical coordinates 
we only kept the first location for further analysis. Addi-
tionally, we removed the points where the Euclidian dis-
tance between two consecutive points (d(x[t], x[t + 1])) 
was larger than the 99.5% of the quantile of all calculated 
Euclidian distances with the additional condition that the 
distance d(x[t], x[t + 2]) was less than 1 km (Tables 2 and 
3, Fig. 6).

Classification of exploratory movements
During the current research, we classified GPS locations 
of collared red foxes as exploratory, which were initially 
classified as stationary by Oehler et  al. [68]. Therefore, 
we applied an individual based criteria based on both 
the distribution of coordinates (x, y) and the distribution 
of the net squared displacement (NSD)  values. In case 
either the x-coordinate, the y-coordinate or the value 
of the NSD was smaller (bigger) than the 1.5% (98.5%) 
quantile of the corresponding stationary period, the GPS 
location was labelled as exploratory. Since this definition 
would always lead to exploratory movements even for 
very stationary individuals with a relatively small home 
range we added a further pre-condition that for each 
location labelled as exploratory the distance towards the 
first location should be bigger than 1 km.

Fig. 4  A histogram of the variable (dt) and a scatter-plot for dt ~ step length, based on the data of the dispersers (n=12). To test the association 
between dt and step length we computed the correlation coefficient between dt and step length for each individual. We used the Spearman 
correlation coefficient as both variables did not meet the assumption of normality. The local significance level is set to 0.004 asserting a global 
significance level of 0.05 (Bonferroni correction − 0.05/12). For four out of 12 individuals, we detected a positive, but not significant correlation (the 
smallest p value was equal to 0.004). We further calculated a generalized linear model analyzing the association between step length and dt. The 
individual was used as a random factor. The output of the model reads as: fixed effects: Estimate =  − 2.089, SE = 0.08, t = − 25.97; random effect ID: 
Variance = 1611, SD = 40.13, suggesting a negative association between step length and dt
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The choice for these quantiles were based on visual 
inspection of both “the NSD-plot” (right column in 
Tables  4 and 5) and the plot of the “movement trajec-
tory” (left column in Tables  4 and 5). We increased or 
decreased the threshold until values led to a classification 
of exploratory movements that met our expectations. 
During this procedure, we noticed that a classification 
based only on x and y coordinates or only on the NSD-
value led to rather unsatisfactory classifications. Thus, we 
combined both conditions. We increased and decreased 
the threshold for the two sided quantiles (Table  5). 

The two sided quantile of 1.5% led to the most reason-
able classification of exploratory movements for all 
individuals.

To better understand the consequences of (a) using 
the coordinates or the NSD value as potential criteria 
for exploratory movements and (b) the choice of quan-
tile-threshold value (here a two sided value of 1.5%) we 
provide some examples in Table 4 and 5. All subsequent 
plots show either the movement trajectory or the NSD-
value (normed to kilometers) of the individual shown in 
the main manuscript. 

Fig. 5  GPS points of the 12 individuals in the stationary movement phase (S1: blue, S2: yellow) and transient movement phase (red)
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Fig. 6  The confusion matrix graph illustrates the True Skill Statistic (TSS) and class error in model predictions, providing details on the number 
of observations correctly and incorrectly classified by the model for each movement phases
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Table 2  Study animals with Fox ID, age, weight, collar type with different data collection frequencies, start date and end date of data 
collection, total number of days collecting data, final total number of GPS points. Bold individuals are the twelve individuals used in 
this data analysis

Fox ID Age Weight [kg] Collar Type Start date End date No. days No. GPS points

Male

FM1 Adult 6.1 e-obs 2020–11-07 2021–07-16 251 12,661
FM2 Adult 6.5 e-obs 2020–12-17 2021–01-30 44 2692
FM3 Subadult 5 Followit 2021–09-08 2021–09-24 15 166

FM4 Subadult 5.1 Followit 2021–09-09 2021–11-22 74 1899
FM5 Subadult 5.6 Followit 2021–09-10 2021–12-20 101 3334
FM6 Subadult 5.3 Followit 2021–09-27 2021–12-23 87 2855
FM7 Subadult 5.5 Followit 2021–10-03 2021–11-30 57 2453

FM8 Subadult 6.5 e-obs 2021–10-16 2021–11-12 27 1113
FM9 Subadult 6.5 Followit 2021–10-19 2021–12-09 51 2095
FM10 Subadult 7.1 Followit 2021–10-31 2022–01-23 84 3004
FM11 Subadult 6 e-obs 2021–12-24 2022–09-21 271 9402

FM12 Adult 5 e-obs 2022–01-17 2022–09-21 247 9873

FM13 Adult 6 e-obs 2022–01-25 2022–09-23 241 11,084

FM14 Subadult 6.5 Followit 2022–10-04 2022–12-16 73 2784

FM15 Subadult 7 Followit 2022–10-20 2023–01-19 91 3558

FM16 Subadult 5.7 Followit 2022–10-24 2023–01-11 79 2698

FM17 Subadult 6 Followit 2022–11-10 2023–01-11 62 2346
FM18 subadult 5.7 e-obs 2022–12-08 2023–01-06 29 693

FM19 Subadult 6.5 e-obs 2023–01-21 2023–03-23 61 2870
Female

FF1 Subadult 5.6 e-obs 2020–10-29 2021–01-30 93 4487
FF2 Adult 4.9 e-obs 2021–01-01 2021–01-12 11 359

FF3 Subadult 5.1 e-obs 2021–01-15 2021–07-27 193 10,584

FF4 Subadult 4.9 e-obs 2021–11-04 2022–04-20 167 6980
FF5 Subadult 6.7 e-obs 2021–12-22 2022–09-28 280 11,937

FF6 Adult 6.5 e-obs 2022–01-09 2022–07-08 180 7254

FF8 Subadult 5.5 Followit 2022–11-28 2023–01-15 48 1703

Table 3  Number of GPS points per habitat class (ESA land 
classification)

1, Tree cover; 2, Greenland; 3, Agricultural field; 4, Settlement; 5, Sparse 
Vegetation; 6, Water; 7, Wetland

Habitat classes 1 2 3 4 5/6/7

GPS points 55,885 87,189 71,727 10,753 110
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Table 4  Labelling exploratory points (green) according to coordinates, the NSD or both criteria. Blue points show the first stationary 
phase, yellow points show the second stationary phase, green points show the exploratory points, red points show the transient phase

Quantile two sided Movement trajectory (x–y Plot) Net squared displacement (NSD)

1.5 / 98.5
(only for coordinates)

  

1.5 / 98.5
(both criteria applied 
[logical “or”])

  

1.5 / 98.5
(only for nsd)
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Abbreviations
GPS	� Global positioning system
OOB	� Out of bag
TA	� Turning angle
SL	� Step length
PV	� Persistence velocity
PDP	� Partial dependence plot
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