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Abstract 

Background  Fish migration has severely been impacted by dam construction. Through the disruption of fish migra-
tion routes, freshwater fish communities have seen an incredible decline. Fishways, which have been constructed 
to mitigate the problem, have been shown to underperform. This is in part due to fish navigation still being largely 
misunderstood. Recent developments in tracking technology and modelling make it possible today to track (aquatic) 
animals at very fine spatial (down to one meter) and temporal (down to every second) scales. Hidden Markov models 
are appropriate models to analyse behavioural states at these fine scales. In this study we link fine-scale tracking data 
of barbel (Barbus barbus) and grayling (Thymallus thymallus) to a fine-scale hydrodynamic model. With a HMM we ana-
lyse the fish’s behavioural switches to understand their movement and navigation behaviour near a barrier and fish-
way outflow in the Iller river in Southern Germany.

Methods  Fish were tracked with acoustic telemetry as they approached a hydropower facility and were presented 
with a fishway. Tracking resulted in fish tracks with variable intervals between subsequent fish positions. This vari-
ability stems from both a variable interval between tag emissions and missing detections within a track. After track 
regularisation hidden Markov models were fitted using different parameters. The tested parameters are step length, 
straightness index calculated over a 3-min moving window, and straightness index calculated over a 10-min window. 
The best performing model (based on a selection by AIC) was then expanded by allowing flow velocity and spatial 
velocity gradient to affect the transition matrix between behavioural states.

Results  In this study it was found that using step length to identify behavioural states with hidden Markov models 
underperformed when compared to models constructed using straightness index. Of the two different straight-
ness indices assessed, the index calculated over a 10-min moving window performed better. Linking behavioural 
states to the ecohydraulic environment showed an effect of the spatial velocity gradient on behavioural switches. On 
the contrary, flow velocity did not show an effect on the behavioural transition matrix.

Conclusions  We found that behavioural switches were affected by the spatial velocity gradient caused by the attrac-
tion flow coming from the fishway. Insight into fish navigation and fish reactions to the ecohydraulic environment can 
aid in the construction of fishways and improve overall fishway efficiencies, thereby helping to mitigate the effects 
migration barriers have on the aquatic ecosystem.
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Introduction
Migration is an integral part of life for many fish species 
[1]. Whether for reaching feeding grounds, spawning 
habitat, or refuge areas, accessibility of different habitats 
can be crucial for the survival and prosperity of fish com-
munities. As human populations began to develop near 
riverine ecosystems, so did the impact of human socie-
ties on aquatic communities. Human societies began 
engineering riverine systems as early as 2000BC [2, 3]. 
Initially, early engineering projects focused on flood pro-
tection and irrigation, but as time progressed dam and 
weir construction for flood control, water storage, and 
hydropower became more important [3]. Today, rivers in 
Europe have a barrier every 1.3 km [4]. Fragmentation of 
water bodies and lack of habitat connectivity is one of the 
reasons behind an 83% decline in freshwater fish commu-
nities and a 76% decline in migratory fish communities 
since the 1970s [5].

Fishways are often constructed to mitigate migra-
tion barriers. Historically, fishway construction has 
focused on salmon and shad [6] but in recent years a 
more community-wide approach has begun to emerge 
[7, 8]. Unfortunately, fishways often do not reach the 
required efficiencies to support sustainable populations 
[9–11]. One way to improved total fishway efficiency is 
by improving the fishway attraction, which measures the 
proportion of fish successfully finding a fishway. Fishway 
attraction efficiencies are variable and can range from 36 
to 60% for different fishways [9]. One issue faced when 
aiming to improve fishway attraction can be a lack of 
understanding regarding the navigational cues used by 
fish to locate passages when confronted with a barrier 
[12].

Recent developments in telemetry technology allow 
researchers to track animals on a near-continuous tem-
poral resolution [13, 14]. With this increase in data-
collection possibilities, multiple opportunities arise for 
analysing fish movement and behaviour [15], especially 
when movement is linked to fine-scale environmental 
measurements and modelling [13, 16]. The advent of 
fine-scale tracking data introduces new complexities to 
datasets and calls for new developments in data anal-
ysis tools. Modelling techniques gaining interest are 
hidden Markov models (HMMs) and state space mod-
els (SSMs) [17, 18]. HMMs (a discrete form of SSMs) 
have been around since the 1990s [19]. One of the first 

research projects kickstarting the use of SSMs and 
HMMs was by Morales et  al. [20], where they looked 
at the movements of elk after a translocation. Recent 
developments in computational power have led to an 
increased popularity of these models [17].

HMMs can be used to identify hidden states based 
on observable variables. Traditionally, these observed 
variables denote a movement speed (usually expressed 
in step length) and a straightness parameter (usually 
expressed in turning angle). However, one is not lim-
ited to these parameters and in the field of movement 
ecology a wide array of movement parameters has been 
developed [21]. In addition to speed, turning, and their 
derivatives, other variables, such as dive depth or dive 
length, can be collected and used in the development of 
HMMs [22].

A drawback of HMMs is that measurement errors 
should be negligible. Although the spatio-temporal res-
olution of aquatic telemetry has become finer, position-
ing errors due to reflections, receiver time drift, etc. 
can still be of a magnitude comparable to the distance 
between neighbour track points. Positioning of acous-
tic telemetry data can be imprecise and often requires 
serious pre-processing to result in usable tracks [14, 
23]. In particular, for stationary behavioural states (e.g. 
resting) measurement errors can be problematic as in 
fine-scale telemetry such states assume a star-shaped 
movement pattern as result of measurement inac-
curacies [14]. Using step length as a proxy for move-
ment speed in such cases can create issues, since the 
error added to the step lengths will blur the differences 
between step lengths in resting (generally small steps) 
versus movement (generally longer steps) states. In 
turn, this blurring can lead to erroneous state assign-
ments, e.g. by assuming resting behaviour is actually 
movement due to longer step lengths as a result from 
measurement errors.

Fish navigation in downstream movement has 
already been linked to flow direction [24], flow veloc-
ity [25, 26] and spatial velocity gradient (SVG) [27]. To 
our knowledge similar work is lacking for upstream 
fish navigation. Despite this research gap, it is gener-
ally assumed that flow velocity and velocity gradients 
are equally important in upstream migration as they 
are in downstream migration [7]. In this research we 
aim to identify searching behaviour as fish undertake 
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their spawning migration. We focus on barbel (Barbus 
barbus) and grayling (Thymallus thymallus) as these 
species undertake spawning migration and are often 
confronted with migration barriers [28, 29]. These two 
fish species were also chosen due to both their abun-
dance within the study system, and their importance 
in identifying longitudinal river zones [30]. As these 
fish are presented with a migration barrier, they need 
to find a fishway to continue their journey and need to 
navigate using ecohydraulic navigation cues. By linking 
behavioural switches to these hydraulic patterns, we try 
to identify which hydraulic cues influence fish navigat-
ing upstream to the fishway entrance.

Methods
Study site
The study was carried out in the Iller river, a tributary 
of the Danube, near the town of Altusried, Germany 
(Fig.  1A). The total discharge during the study period 
(April-June 2018) was on average 65 m3/s and ranged 
from 27 to 214 m3/s. A nature-like fishpass with a dis-
charge capacity of 1 m3/s was constructed to mitigate 
migration over the barrier. The downstream entrance 
of the fishpass is situated 250  m below the hydropower 
plant (HPP) on the same side as the turbine outlet. The 
upstream fishpass entrance is situated 150 m upstream of 
the HPP (Fig. 1B).

Hydrodynamic model
A two-dimensional (2D) hydrodynamic model was devel-
oped for eight different discharge situations ranging 

from 10 to 80 m3/s. The modelled values span the range 
from the minimal discharge needed to operate the HPP, 
to twice the mean annual flow. Discharge regimes only 
peaked above these values 3 times within the study 
period. The model bathymetry is based on echosounder 
measurements and an aerial drone survey. The compu-
tational mesh, consisting of triangle elements, ranging 
in linear size from 0.25 to 0.5 m, was developed with the 
pre- and post-processing software SMS [31]. The model 
Hydro-As_2D [32], based on the Saint-Venant equations, 
calculates water depths and depth-averaged components 
of flow velocity for every node of the computation model. 
Model calibration was done by using water surface eleva-
tions at a discharge of 10 m3/s; of which 9 m3/s passed 
through the hydropower turbines and 1 m3/s through the 
fishway. In other discharge regimes the fishway remained 
operating at ~ 1 m3/s with the remaining discharge origi-
nating from the HPP turbine and/or associated spill 
weirs. To derive values of SVG on a regular grid, distri-
butions of flow velocity vectors at every discharge were 
interpolated into a raster nodes on a cell size of 0.5 × 0.5 
m (Fig. 2). The SVG is calculated as follows:

SVGx =
δvx

δL

SVGy =
δvy

δL

SVG = SVG2
x + SVG2

y

Fig. 1  A location of the study site (red dot) in Germany. The Iller river (blue) is a right tributary of the Danube (orange). B Aerial map of the study 
site in Altusried overlayed with the simulated flow velocity at a discharge of 50 m3/s. White dots show HR2 receiver locations, red star marks 
the fishway entrance downstream of the hydropower plant, the yellow triangle marks where fish were caught, and the yellow plus-sign marks 
the release location. C Shows the bathymetry of the study site at a discharge of 50 m3/s. Water flows from south-east to north-west. Red dotted 
lines mark the borders of the area for which tag detections were analysed
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In which SVGx and SVGy are the SVG components in 
x and y direction respectively. δvx and δvy are the differ-
ences in the flow velocity components between neigh-
bour cells in x and y orthogonal direction respectively, δL 
is the distance between mesh nodes.

Fish tagging and tracking
Twenty-two barbel (TL: 498 ± 73 mm; weight: 1356 ± 592 
g) and twenty-five grayling (TL: 367 ± 56 mm; 630 ± 270 g) 
were caught and tagged between March 28th and May 
29th 2018 (Table  5). 30 fish were caught in a counting 
pool within the fishway (47.82°N, 10.23°E; see Fig.  1B), 
the remaining fish, all grayling, were caught with electro-
fishing from a boat downstream of the HPP. Fish tagging 
was done with VEMCO V9-tags (now InnovaSea; ran-
dom burst interval PPM: 50–70 s; random burst interval 
HR: 1.1–1.3  s). Tags were implanted in the abdominal 
cavity after sedation in a 0.2  ml/l 2-phenoxy-ethanol 
solution. Fish were held in a recovery tank until normal 
behaviour was shown, typically between 2 and 11  min 
(see Table 5 in the appendix). After recovery in a holding 
tank fish were released just downstream of the 2D telem-
etry array (47.82°N, 10.22°E; Fig. 1B).

The 2D telemetry array consisted of 16 180  kHz HR2 
VEMCO receivers and included 6 reference tags. The 
array spanned 300  m of the river downstream of the 
hydropower facility (Fig.  1B). Three additional receivers 
were placed in a 1D set up outside the 2D receiver array 
to evaluate the behaviour of fish exiting the study area. 
One receiver was placed 1500 m downstream of the 2D 
array to evaluate escapement to the downstream section 
of the river, and two receivers were placed in the fish pass 
to evaluate fish passage efficiency (one halfway into the 
fish pass, and one at the fish pass exit upstream of the 
hydropower facility; see Fig. 1B for receiver placement). 

The telemetry array was installed from March 2018 to 
August 2018, but since this study was focussed on migra-
tory behaviour the tracking data was filtered to reflect 
the migration period of these fish species (see the section 
‘Track filtering and regularisation’).

Data processing and analysis
Fish positioning
Fish positions were calculated using a novel localization 
algorithm [33] using time of arrival (TOA) of the tag sig-
nals at georeferenced acoustic receivers deployed in the 
study area (see Fig. 1B). Our method is based on a maxi-
mum likelihood formulation as described in [34], where 
a cost function is defined in terms of time of arrival and 
sound of speed. Using the recorded time of arrival at each 
receiver, and given the known distances between receiv-
ers and synchronization tags, receivers were synchro-
nized by a polynomial fit for receivers and sound of speed 
that minimized the sum of absolute residuals across all 
receiver detections. Contrary to other positioning algo-
rithms, such as YAPS [23], UMAP [35], or VPS [36], this 
method does not depend on tag transmission interval 
(e.g., fixed, nominal).

Fish locations were estimated in a similar manner to 
the synchronization process above, with the addition 
of smooth splines components to the horizontal move-
ment of each fish as done by [37]. Based on model per-
formance, estimated errors, in meters, were calculated 
for each position in the x- and y-direction as well as the 
overall Cartesian direction (Fig. 3). Based on a GPS test 
track, the actual mispositioning (i.e., difference between 
GPS coordinates and the positioning by the algorithm) 
was highest towards the edges of the array. This corre-
sponded to the error of the overall Cartesian direction 
values given by the positioning algorithm (see Fig. 3).

Fig. 2  Distribution of SVG at 10 m3/s (A) and 80 m3/s (B). At lower discharges the attraction flow of the fishway has a more pronounced effect 
on SVG than under high discharge conditions
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Track filtering and regularisation
To focus on migratory behaviour tracking, data was lim-
ited to the spawning period for the two fish species con-
sidered in this study. For barbel, tracks between April 
20th and June 20th [28] were selected. For grayling, 
tracks were selected between March 10th to April 20th 
[29].

Fish positions were retained for the area marked in 
Fig. 1B. This is the area between the most upstream and 
downstream receiver in the 2D receiver array. Fish posi-
tions outside of this area were removed because the accu-
racy of the positioning decreases outside of a receiver 
array [36]. Additionally, positions with an overall cal-
culated Cartesian positioning error (error_xy) exceed-
ing 1.7 m (top 5%) were omitted, to reduce the effect of 
measurement errors on the subsequent analyses and 
calculations. Tracks were subdivided and handled as 
individual tracks if the time-interval between detec-
tions exceeded 5  min. Resulting tracks were regularised 
to a 30 s interval following Lamonica et al. [14]. This was 
done by fitting a continuous-time correlated random 
walk to the tracking data and resampling this continu-
ous track with a 30 s interval [38]. The regularised tracks 
were visually inspected to evaluate potential deviations 
from the original tracks. Tracks with a duration of less 
than 10 min or a length of less than 100 m (roughly the 
distance between the fishway and the edge of the array) 
were not considered.

State definitions using HMMs
HMMs are widely considered to be useful tools in identi-
fying different behavioural patterns from movement data 
and can help understand the underlying processes [21]. 
The premise of an HMM is that an unobservable process 
can be inferred from observable variables (Fig. 4) [ 39]. In 
the field of movement ecology, this normally means infer-
ring behaviour from movement speed (usually measured 
in step lengths) and directionality (usually expressed in 
turning angles). The HMM is dependent on two compo-
nents: the state distribution and the transition matrix. 
The state distribution describes the probability of a value 
being assigned to one state or the other (see Figs. 6 and 
9 for examples). The transition matrix shows the prob-
ability of a fish changing from one behavioural state to 
the other. When assigning states to the actual observa-
tion, both processes are taken into consideration in the 
Viterbi algorithm [39, 40], which is used to calculate the 
most probable state sequence based on the observation 
sequence. 

The straightness index (SI) is a ratio measuring the 
straightness of a line, where values approaching 0 show 
complete tortuosity and 1 is perfect straightness. Since 
it is assumed that resting behaviour is shown as a star-
shaped pattern due to telemetry positioning errors, it can 
be assumed that SI approaches 0 during resting behav-
iour. Actual movement will be more directed, leading to 

Fig. 3  GPS track testing the positioning performance. Error_xy shows 
higher values towards the edged of the array (A). This corresponds 
to the actual positioning error (B)

Fig. 4  Basic dependence structure of an HMM. The state at time t + 1 
(St+1) is dependent on the observation at t + 1 (Ot+1) through the state 
distribution, and the state at the previous observation (St) 
through the transition matrix. The environment can act 
on the transition matrix and can thus affect the probabilities of a fish 
changing behaviour between detections. The Viterbi algorithm 
calculates the most probable state sequence for St:St+3 based 
on the observation sequence Ot:Ot+3 and the transition matrix [39]
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an SI with higher values. To test the performance of using 
SI compared to the more commonly used parameter step 
length, three different 2-state HMMs were developed, 
one using step lengths as explanatory data stream and 
two using SI at different time windows (SI_3 with a 3-min 
window and SI_10 with a 10-min window). In addition to 
these 2-state models a 3-state model was developed by 
combining SI_3 and SI_10. The SI was calculated follow-
ing Batschelet [41] using:

In which D stands for the beeline distance between the 
first and last detection in a moving window, and L for the 
total track length in said window.

Model parameterization was done with a non-linear 
minimization (nlm) using the fitHMM function from the 
momentuHMM package [42]. In the models, step length 
was assumed to follow a gamma distribution and SI to fol-
low a beta distribution [18, 42]. The beta distribution for 
SI was chosen as this distribution accurately represents 
both the 0 to 1 scale, unlike e.g. gamma-distributions, and 
the continuous nature of the index, unlike e.g. the Ber-
noulli-distribution. The models were assumed to have two 
behavioural states and were fitted 50 times with initial val-
ues drawn randomly following the methodology of [43]. 
For each model the iteration with the highest log-likeli-
hood value was retained for further analysis. An inspec-
tion of the Viterbi decoded state sequences of the 2-state 
models indicated that searching behaviour and true rest-
ing behaviour could have been merged due to similar 
SI_10 values. To separate the searching behaviour from 
the resting behaviour the 2-state SI_10 model was further 
developed. The choice to improve the SI_10 model was 
based on AIC values of the different models (see Tables 2 
and 4). The state separation of the 3-state model was done 
by assuming known states for the detections defined as 
transit behaviour by the 2-state model based on SI_10 
and fitting a new model identifying two new states on the 
remaining, undefined detections based on SI_3.

To test for individual differences an interaction 
between the transition matrix and fish ID was added In 
addition to individual differences the effect of catching 
method was tested for grayling. This was done by fitting 
separate HMMs were for fish caught in the upstream 
counting pool and with electrofishing. No differences 
were found in these model adaptations and thus all fish 
were pooled by species for the final models.

To identify the effect of hydraulic parameters (flow 
velocity, SVG and their respective angles relative to the 
fish swimming direction), the best performing model for 

SI =
D

L

grayling and the best performing model for barbel were 
refitted while allowing the hydraulic parameter to act 
on the transition matrix through a regression formula 
[42]. Since SVG had a heavily right-skewed distribution 
(Fig.  5), the effect of higher values was tested. This was 
done by re-fitting the HMM after removing detections 
with high SVG values based on the IQR rule. This meant 
removing detection that exceeded Q3 + 3*IQR (the 75th 
percentile plus 3 times the interquartile range) using the 
log-transformed data for SVG. As removing these values 
did not impact the outcome of the HMMs, and SVG val-
ues were still within reasonable ranges, it was decided to 
retain these higher SVG values.

Apart from the hydrodynamic modelling, all data prep-
aration and analysis was done in RStudio v4.2.2 [44].

Results
Track information
After pre-processing the fish position data according to 
the criteria listed in the section ‘Track filtering and regu-
larisation’, 50 tracks remained for grayling and 162 tracks 
remained for barbel. For grayling the average track dura-
tion was 233  min and for barbel average track duration 
was 152 min. The average track lengths were 1087 m for 
grayling and 774 m for barbel. See Table 6 in the appen-
dix for detailed information on the tracking data used.

The encountered SVG for both grayling and barbel 
was heavily right skewed. This can be attributed to the 
localised nature of high SVG values. High SVG values 
primarily occurred near the fishway entrance, whereas 
the rest of the study area was characterised by low values 
(< 0.1 m/s/m) (Fig. 2).

Grayling
2‑state models
All three 2-state models for grayling showed a resting 
state and a transit state (see Fig. 6). For the model based 
on step length, behavioural states were assumed to have 
a gamma distribution. For the models based on SI, the 
behavioural states were assumed to follow a beta distri-
bution. In the model based on step lengths the resting 
state was defined as having a mean step length (µ) of 
0.29 m and standard deviation (σ) of 0.37 m. The transit 
state was defined as a having µ = 4.99 m and σ = 4.29 m. 
In the SI_3 model the resting state was defined as hav-
ing µ = 0.28 and σ = 0.02, and the transit state was defined 
as having µ = 0.72 and σ = 0.01. The SI_10 model had a 
resting state defined as having µ = 0.15 and σ = 0.01 and a 
transit state having µ = 0.57 and σ = 0.03 (Fig. 6C).
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Based on the AIC values and the log-likelihood, the 
SI_10 model was the best fit for the data (see Table 2).

3‑state model
Fixing the transit state from the SI-3 2-state model ena-
bled separating the resting state into a true resting state 
and a state characterised by searching behaviour (see 
Fig. 7). The resulting model identified:

(1)	 A straight state, characterized by high SI_3 and high 
SI_10 values (SI_3: µ = 0.54, σ = 0.27; SI_10: µ = 0.56, 
σ = 0.18),

(2)	 A very tortuous state, characterized by low SI_3 and 
SI_10 values (SI_3: µ = 0.24, = 0.14; SI_10: µ = 0.13, 
σ = 0.09), and

(3)	 A state with medium tortuosity, characterized 
by high SI_3 but low SI_10 values (SI_3: µ = 0.63 
σ = 0.15; SI_10: µ = 0.17, σ = 0.09).

From here on the three states will be referred to as 
transit, resting, and searching respectively. The 3-state 
model had a higher AIC and lower LL, and is thus per-
forming poorer, than the two SI models, though it per-
formed better than the step length model (see Table 2).

Including ecohydraulic variables
Including SVG affected the transition matrix. As SVG 
increased, the probability of a fish switching to state 1 
(resting) increased. SVG angle along with the interaction 
between SVG value and SVG angle had a limited effect 
(Table 1). Including flow velocity and flow direction had 

Fig. 5  Encountered SVG (A), flow velocity (B), discharge (C), and water depth (D) for grayling and barbel
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a very limited effect (Fig.  8B and Table  1). Including an 
interaction effect between SVG value and flow velocity 
results in a slight effect of SVG (Fig.  8C1 and Table  1) 
whereas flow velocity again had no real effect (Fig.  8C2 
and Table 1). 

Barbel
2‑state model
For barbel all 2-state models resulted in a resting state 
and a transit state (see Fig. 9). As with grayling the step 
length model assumed gamma distributions for the 
behavioural states and the SI models assumed beta dis-
tributions (Tables  2 and 3). In the step length model a 
resting state found with mean step length of 0.43 m and 
a standard deviation of 0.51 m and transit behaviour with 
an average step length of 4.31 m and a standard deviation 
of 3.55 m. In the SI_3 model the states a tortuous resting 
state was found with a mean SI of 0.30 m (standard devi-
ation 0.02 m) and a straight transit mode with an aver-
age SI of 0.71 m (standard deviation 0.01 m). The SI_10 
model also showed a tortuous resting behaviour (µ = 0.14 
and σ = 0.01) and a straight transit mode (µ = 0.57 m and 
σ = 0.02). As with the models developed for grayling the 
model based on SI_10 performed best with the model 
based on step length performed poorest (Table 4).

3‑state model
Fitting a 3-state model by fixing the transit-state (state 
1 in the 3-state model) resulted in three clear states (see 
Fig. 10):

(1)	 A straight state, characterized by high SI_3 and 
high SI_10 values (SI_3: µ = 0. 58, σ = 0. 23; SI_10: 
µ = 0. 57, σ = 0. 17),

(2)	 A very tortuous state, characterized by low SI_3 
and SI_10 values (SI_3: µ = 0. 26, σ = 0.14; SI_10: 
µ = 0.13, σ = 0.09), and

(3)	 A state with medium tortuosity, characterized 
by high SI_3 but low SI_10 values (SI_3: µ = 0.65, 
σ = 0.15; SI_10: µ = 0.16, σ = 0.10).

As with the 3-state model developed for grayling these 
states will be called transit, resting, and searching respec-
tively. Trying to define a third state decreased the overall 
performance of the model (Table 4).

Including ecohydraulic variables
The effect of the ecohydraulic parameters were tested on 
the best performing model, which was the SI_10 model. 
At high SVG values barbel were more likely to switch 
behaviour from state 2 (transit) to state 1 (resting). SVG 

Fig. 6  State distributions for the 2-state models (A) step length 
model, (B) SI_3 model, and (C) SI_10 model for grayling. In all models 
a resting state (solid lines and black bars) and a transit state (dashed 
lines and grey bars) could be identified

Fig. 7  State distributions of (A) SI_3 and (B) SI_10 for the 3-state 
model for grayling. In the model we see a transit state (white 
bars and dashed line), a resting state (black bars and solid line), 
and a searching state (grey bars and dotted line). Even though this 
model makes biological sense AIC and LL support the 2-state models 
over this 3-state model
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angle (Fig.  11A2), flow velocity (Fig.  11B1), and flow 
angle (Fig.  11B2) had no effect on the transition prob-
abilities. When testing for the interaction between SVG 
and flow velocity (Fig. 11C) again only SVG had an effect, 
but the effect was more pronounced and with a smaller 
95% confidence interval, than when testing for SVG and 
SVG angle.

Discussion and conclusion
In this paper it is shown that using SI as a data stream 
to classify behavioural states using HMMs is the bet-
ter option when compared to using the traditional step 
length. Based on model AIC and log-likelihood val-
ues, the best model for both barbel and grayling was a 
2-state model identifying resting and transit behaviour 
based on a SI calculated over a 10 min window. Trying to 
identify a third behaviour (searching) diminished model 
performance.

Linking the behavioural states to ecohydraulic 
parameters enabled analysing how fish behaviour is 
affected by the ecohydraulic environment. Surprisingly, 
fish behaviour was not impacted by flow velocity, con-
trasting with general assumptions on fish behaviour [7]. 
The lacking effect of flow velocity might be attributed 
to the relatively low flow velocities compared to critical 
swimming speed of the fish species used in this study. 
Grayling can sustain a swimming speed of 1.3–1.4 m/s 
for 2 min [45]. For barbel no critical swimming speeds 
have been found, but the closely related Iberian bar-
bel (Barbus bocagei) has a critical swimming speed 
between 0.7 and 1  m/s [46]. Looking at the used flow 
velocities it can be seen that barbel indeed tended to 
select locations with flow velocities of 0.5–0.7 m/s, and 
only at higher discharges (> 70 m3/s) barbel started 
selecting lower flow velocities (see Figs.  12 in appen-
dix). Flow velocities ranged from 0.0 to 1.0  m/s, with 
the highest values around the fishway entrance. Based 
on critical swimming speeds, grayling should have no 
problem overcoming the flow velocities in this system. 
Barbel could potentially have some issues overcoming 
the flow velocities found in this study site, but from our 
analyses it seemed that fish in were not affected by the 

flow velocities found in the Altusried study site. Theo-
retically, this could be due to barbel being able to uti-
lize habitat structures (for example large boulders) to 
shelter from high flow velocities or utilize near-bed 
velocities instead of the full flow velocities seen higher 
in the water column [47, 48]. However, since this study 
did not include depth measurements it is impossible 
to draw definitive conclusions on this subject. Future 
studies could account for depth by using 3D acous-
tic tracking when analysing fish navigation in rela-
tion to environmental cues such as flow velocity, SVG, 
bathymetry and substrate.

SVG did have an impact on the behavioural switches. 
For both grayling and barbel, an increase in SVG was 
associated with an increased probability of a fish chang-
ing behaviour, from transit to resting. However, due to 
the large window used to calculate SI what we call rest-
ing can also include searching behaviour. This is due to 
the star-shaped patterns approaching similar SI-values 
as searching behaviour where fish pace up-and-down 
an area where they expect passage. The effect of SVG 
on the transition matrices would suggest that SVG is an 
important navigational cue for fish. However, it should 
be noted that these effects are accompanied by a wide 
confidence interval. The wide confidence interval can 
be attributed to the localized nature of SVG and limited 
amount of data at higher SVG values. High SVG values 
almost exclusively occurred near the fishway and are a 
result of the attraction flow stemming from the fishway. 
In the tracking data, higher SVG values accounted for 
very few detections compared to the entire dataset (only 
0.15% above 0.3 m/s/m). The effect of these outliers was 
tested by removing the most extreme cases and re-fitting 
the model. Removing outliers did not change the broader 
pattern found when linking SVG to the transition matrix, 
which in turn led to the decision to retain these values. 
Since the high SVG values do not represent unrealis-
tic values and their low abundance in the dataset can be 
attributed by their low abundance in the study system it 
was also decided to not apply a transformation to handle 
outliers.

(See figure on next page.)
Fig. 8  Effect of SVG, flow velocity, and their interaction on the transition matrix for grayling with associated 95% confidence interval (CI) (grey 
bars). Every cluster of four graphs should be read as: top-left) probability of a behavioural switch from behaviour 1 to behaviour 1, top-right) 
the chance of switching from behaviour 1 to behaviour 2, bottom-left) switching from behaviour 2 to behaviour 1, and bottom-right) switching 
from behaviour 2 to behaviour 2. SVG had an effect, though CI is relatively wide (A1). SVG relative angle had no effect (A2). Flow velocity had 
no effect for either absolute values (B1) or relative angle (B2). In the interaction only SVG had an effect (C1)
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Fig. 8  (See legend on previous page.)
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Table 1  Regression coefficients for the transition matrix when 
including SVG, flow, and the interaction between SVG and flow 
velocity

1 → 2 2 → 1

SVG

(Intercept) − 3.20 − 2.94

SVG − 1.41 2.18

SVG angle 0.09 − 0.04

SVG:SVG angle − 2.78 − 0.19

Flow

(Intercept) − 3.47 − 2.62

Flow velocity 0.47 − 0.46

Flow angle − 0.05 0.13

Flow velocity:Flow angle − 0.05 − 0.22

Interaction

(Intercept) − 3.41 − 2.70

SVG − 1.56 1.21

Flow velocity 0.28 − 0.49

SVG:Flow velocity 5.04 1.67

Fig. 9  State distributions of the step length model (top), SI_3 
model (middle), and the SI_10 model (bottom). All states showed 
a resting state (black bars and solid lines) and a transit state (grey bars 
and dashed lines)

Table 2  AIC and log-likelihood (LL) values for the different 
models for grayling

The 2-state SI_10 model scored best as indicated by AIC and log-likelihood. 
Including the ecohydraulic variables to the SI_10 model (models SVG, flow 
velocity, and interaction) did not greatly improve the models as indicated by AIC 
and log-likelihood values

AIC LL

Step length 49781.91 − 24883.96

SI_3 − 11433.97 5723.99

SI_10 − 26147.03 13080.51

3-state − 7978.57 4011.28

SVG − 26141.56 13083.78

Flow velocity − 26150.84 13088.42

Interaction − 26148.88 13088.42

Table 3  Regression coefficients for barbel when including SVG, 
flow, and the interaction between SVG magnitude and flow 
velocity

1 → 2 2 → 1

SVG

(Intercept) − 3.34 − 3.23

SVG − 3.16 5.63

SVG angle 0.04 − 0.05

SVG:SVG angle − 0.24 − 1.40

Flow

(Intercept) − 3.69 − 2.89

Flow velocity 0.44 − 0.32

Flow angle − 0.13 0.08

Flow velocity:Flow angle 0.17 − 0.18

Interaction

(Intercept) − 3.60 − 3.17

SVG 0.71 2.58

Flow velocity 0.46 − 0.17

SVG:Flow velocity − 7.72 7.14

Table 4  AIC and log-likelihood (LL) values for the different 
models for barbel

The 2-state SI_10 model performed best as indicated by AIC and log-likelihood. 
Including the ecohydraulic variables to the SI_10 model (models SVG, flow 
velocity, and interaction) resulted in lower scoring information criteria

AIC LL

Step length 142656.72 − 71321.40

SI_3 − 27500.34 13757.17

SI_10 − 60016.88 30015.44

3-state − 19232.10 9638.05

SVG − 26155.94 13083.78

Flow velocity − 26150.84 13088.42

Interaction − 26148.86 13088.42
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Something that could not be tested sufficiently is the 
effect of catch location and catching method. Since all 
barbel were caught in the counting pool in the upper part 
of the fishway, it can be assumed that these fish already 
know where the fishway is located. Grayling catches were 
more evenly distributed between the counting pool and 
electrofishing. Developing separate HMMs for the two 
catching methods did not reveal differences in the state 
definition, leading to all individuals being pooled in the 
analyses. Studies investigating the learning process of fish 
when searching for fishways could reveal very interesting 
findings as laboratory settings have shown spatial learn-
ing behaviour in fish [49]. Additionally, individual varia-
tion is not directly accounted for in this study. To fully 
investigate the effect of individual behaviour, a separate 
HMM would be required for every individual. Since 
HMMs are a data-driven method, this would rely on 
all behavioural types being shown by all fish. As not all 
fish were exhibiting all different behaviours, and similar 
behaviour might look different for different fish it is dif-
ficult to make individual HMMs universal. Including fish 
ID as a random variable affecting the transition matrix 
did not reveal individual differences. This indicates that 

behavioural switches are similar between different fish of 
the same species.

For fishway design, results suggest that the focus 
should be on optimizing SVG rather than flow veloc-
ity in the attraction flow. However, given that SVG is a 
direct effect of (differences in) flow velocity, this does 
not mean that flow velocity can be completely removed 
from the equation. First and foremost, attraction flow 
velocity should not exceed swimming capacities of 
target fish species [50]. In addition, a high SVG value 
depends on areas with higher flow velocities adjacent to 
areas with lower flow velocities. So rather than absolute 
values, flow velocity should be considered in relation 
to the surrounding ecohydraulic environment and how 
target species react to gradients in this flow velocity. In 
this study, the application of HMMs to fine-scale track-
ing data is demonstrated. Yet, attributes of fine-scale 
data still need to be considered. Positioning errors can 
seriously affect model performance when these models 
are based on parameters derived from only a few posi-
tions. For example, step length only depends on two 
detections and are prone to error at fine scales [51]. 
Taking parameters calculated over more detections 
can smooth the effects of positioning errors. Therefore, 
we recommend that other movement parameters are 
used when applying HMMs to fine-scale tracking data, 
preferably parameters that are calculated over multiple 
detections. Applying such an approach allows research-
ers to smooth the tracking data while still retaining 
valuable information on the very fine scale, enabling 
links to be made between animal movement and the 
environment the animal utilizes [15]. SI seems to be a 
very viable option to use in applying these models, but 
there is a wide variety of parameters (e.g. net squared 
displacement, sinuosity, multi-scale straightness index) 
that can be used in defining behavioural states [21]. 
Important steps to consider when applying these kinds 
of models is thoroughly understanding your study sys-
tem, potential causes of mispositioning, and the effect 
the temporal resampling and extent of the moving win-
dow has when calculating the movement parameters 
used in the model.

Fig. 10  Beta distributions of the 3-state model for barbel. The model 
could identify resting behaviour based on SI_3 and can differentiate 
between searching and transit based on SI_10

Fig. 11  Effect of SVG, flow velocity, and their interaction on the transition matrix for barbel with associated 95% confidence interval (CI) (grey bars). 
Every cluster of four graphs should be read as: top-left) probability of a behavioural switch from behaviour 1 to behaviour 1, top-right) the chance 
of switching from behaviour 1 to behaviour 2, bottom-left) switching from behaviour 2 to behaviour 1, and bottom-right) switching from behaviour 
2 to behaviour 2. Absolute values of SVG seemed to have an effect, although a wide CI can be seen (A1). SVG relative angle had no effect (A2). Flow 
velocity had no effect for either absolute values (B1) or relative angle (B2). In the interaction only SVG had an effect (C1).

(See figure on next page.)
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Fig. 11  (See legend on previous page.)
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Appendix
See Fig. 12.

Fig. 12  Habitat use (black) and available habitat (white) for grayling and barbel
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Fig. 12  continued
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Fig. 12  continued
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See Tables 5 and 6.

Table 5  Information on the tagged fish in this study

Tagging date Species Catch method Total length (mm) Weight (g) Recovery time

29/05/2018 Barbel Counting pool 570 2160 0:03:49

29/05/2018 Barbel Counting pool 594 2161.7 0:04:03

29/05/2018 Barbel Counting pool 456 932.6 0:03:37

24/05/2018 Barbel Counting pool 504 1285.8 0:03:43

24/05/2018 Barbel Counting pool 496 1106.8 0:07:34

24/05/2018 Barbel Counting pool 460 911.2 0:03:37

24/05/2018 Barbel Counting pool 619 2343.3 0:07:34

24/05/2018 Barbel Counting pool 545 1567.6 0:06:30

29/05/2018 Barbel Counting pool 480 1180.5 0:03:58

24/05/2018 Barbel Counting pool 526 1465.7 0:05:04

24/05/2018 Barbel Counting pool 330 327.2 0:04:45

24/05/2018 Barbel E-fishing 460 1053.2 0:05:04

24/05/2018 Barbel Counting pool 461 1010.6 0:06:19

24/05/2018 Barbel Counting pool 585 2105.1 0:11:58

24/05/2018 Barbel Counting pool 594 2212.7 0:03:17

24/05/2018 Barbel Counting pool 513 1544.1 0:07:15

24/05/2018 Barbel E-fishing 457 822.9 0:05:26

17/05/2018 Barbel Counting pool 516 1306.5 0:06:36

17/05/2018 Barbel Counting pool 387 648.4 0:06:01

17/05/2018 Barbel Counting pool 545 2074.4 0:05:57

17/05/2018 Barbel Counting pool 466 1009.6 0:06:12

17/05/2018 Barbel Counting pool 400 621.2 0:08:47

11/04/2018 Grayling E-fishing 403 673.3 0:11:23

11/04/2018 Grayling Counting pool 409 623.2 0:07:13

11/04/2018 Grayling NA 350 315 0:10:37

11/04/2018 Grayling Counting pool 326 262.1 0:11:12

11/04/2018 Grayling Counting pool 439 755.4 0:03:58

04/04/2018 Grayling E-fishing 420 791.3 0:04:59

11/04/2018 Grayling Counting pool 508 1250.8 0:04:42

11/04/2018 Grayling Counting pool 426 756.8 0:08:37

11/04/2018 Grayling E-fishing 416 843.9 0:06:00

11/04/2018 Grayling Counting pool 411 640.1 0:02:53

04/04/2018 Grayling E-fishing 348 402.1 0:05:03

04/04/2018 Grayling E-fishing 383 657.7 0:04:57

04/04/2018 Grayling E-fishing 431 712.3 0:05:03

04/04/2018 Grayling Counting pool 371 444.6 0:05:28

04/04/2018 Grayling E-fishing 494 1048.5 0:05:51

04/04/2018 Grayling Counting pool 425 642.4 0:05:54

04/04/2018 Grayling E-fishing 498 1152.9 0:11:02

04/04/2018 Grayling Counting pool 331 317.3 0:03:50

04/04/2018 Grayling E-fishing 400 683 0:03:55

04/04/2018 Grayling E-fishing 389 634.2 0:03:30

04/04/2018 Grayling E-fishing 406 707.3 0:05:19

04/04/2018 Grayling E-fishing 309 233.4 0:04:46

04/04/2018 Grayling Counting pool 407 606.4 0:02:57

28/03/2018 Grayling E-fishing 318 312 0:08:21

28/03/2018 Grayling E-fishing 304 286 0:07:29
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Table 6  Information on the individual tracks used in the analyses

Species Track id Number of detections Duration (minutes) Total track length (m) Maximum 
displacement 
(m)

Grayling 46,868–15 511 255 867.69 148.35

Grayling 46,868–16 655 327 2123.69 274.57

Grayling 46,868–19 1940 969.5 3559.65 117.64

Grayling 46,868–5 102 50.5 680.98 104.23

Grayling 46,868–7 170 84.5 247.79 134.33

Grayling 46,869–1 459 229 2790.99 105.76

Grayling 46,901–15 103 51 222.20 151.63

Grayling 46,901–18 70 34.5 400.14 146.14

Grayling 46,901–19 141 70 696.41 114.77

Grayling 46,901–22 348 173.5 859.76 141.54

Grayling 46,901–31 62 30.5 258.77 122.00

Grayling 46,901–34 267 133 1167.22 102.70

Grayling 46,901–38 1425 712 3808.62 126.63

Grayling 46,902–1 76 37.5 651.77 159.04

Grayling 46,903–1 85 42 452.06 221.20

Grayling 46,903–2 189 94 523.37 143.65

Grayling 46,905–10 180 89.5 240.69 100.64

Grayling 46,905–30 259 129 798.70 114.96

Grayling 46,905–47 338 168.5 866.60 157.51

Grayling 46,905–49 323 161 566.98 158.02

Grayling 46,905–55 316 157.5 590.84 133.08

Grayling 46,905–6 1067 533 1100.80 100.51

Grayling 46,906–10 715 357 2501.92 207.39

Grayling 46,906–17 318 158.5 2716.77 232.77

Grayling 46,906–18 319 159 2070.71 134.79

Grayling 46,906–19 613 306 1967.08 268.14

Grayling 46,906–2 243 121 1066.06 127.60

Grayling 46,906–21 1228 613.5 1054.39 156.74

Grayling 46,906–22 92 45.5 799.70 272.43

Grayling 46,906–47 257 128 1287.69 275.00

Grayling 46,906–51 176 87.5 1300.26 139.50

Grayling 46,907–19 86 42.5 525.89 106.73

Grayling 46,908–14 286 142.5 177.55 109.41

Grayling 46,908–37 829 414 1266.41 206.48

Grayling 46,908–90 587 293 1074.50 194.73

Grayling 46,908–94 764 381.5 1070.96 146.99

Grayling 46,908–95 84 41.5 773.02 206.97

Grayling 46,909–9 666 332.5 1125.09 168.90

Grayling 46,910–12 98 48.5 566.11 171.65

Grayling 46,910–27 1346 672.5 1922.38 130.16

Grayling 46,910–40 372 185.5 572.78 152.55

Grayling 46,910–49 330 164.5 1590.07 280.60

Grayling 46,910–55 698 348.5 1039.94 153.00

Grayling 46,910–64 310 154.5 732.75 215.44

Grayling 46,910–66 308 153.5 655.33 274.43

Grayling 46,911–2 67 33 407.23 101.82

Grayling 46,913–5 69 34 339.50 253.44

Grayling 46,914–12 152 75.5 506.37 197.37
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Table 6  (continued)

Species Track id Number of detections Duration (minutes) Total track length (m) Maximum 
displacement 
(m)

Grayling 46,914–5 2804 1401.5 1236.82 128.31

Grayling 46,914–9 417 208 461.67 122.91

Barbel 46,838–11 190 94.5 611.42 250.74

Barbel 46,838–28 127 63 511.66 281.67

Barbel 46,838–29 116 57.5 453.16 228.40

Barbel 46,838–3 350 174.5 868.40 126.88

Barbel 46,838–35 370 184.5 718.88 240.70

Barbel 46,838–36 543 271 830.03 129.74

Barbel 46,838–5 145 72 408.97 167.13

Barbel 46,838–8 295 147 871.92 246.96

Barbel 46,839–10 882 440.5 1083.63 182.55

Barbel 46,839–13 386 192.5 842.06 199.33

Barbel 46,839–15 222 110.5 562.25 146.39

Barbel 46,839–17 100 49.5 317.26 136.76

Barbel 46,839–18 448 223.5 506.04 105.05

Barbel 46,839–22 116 57.5 751.54 252.02

Barbel 46,839–28 102 50.5 282.41 133.86

Barbel 46,839–30 242 120.5 1059.66 235.88

Barbel 46,839–32 387 193 642.94 197.88

Barbel 46,839–35 80 39.5 501.65 201.21

Barbel 46,839–37 354 176.5 440.42 209.18

Barbel 46,840–6 904 451.5 673.52 184.55

Barbel 46,840–7 176 87.5 377.22 210.40

Barbel 46,840–8 383 191 535.65 205.15

Barbel 46,844–11 93 46 482.80 185.23

Barbel 46,844–4 615 307 579.47 125.11

Barbel 46,844–7 316 157.5 553.36 226.63

Barbel 46,845–24 190 94.5 798.79 120.05

Barbel 46,845–27 103 51 468.00 175.34

Barbel 46,845–34 523 261 1246.42 128.36

Barbel 46,845–39 377 188 519.22 132.66

Barbel 46,845–5 305 152 310.52 119.61

Barbel 46,845–6 373 186 462.12 177.54

Barbel 46,845–7 71 35 300.43 262.76

Barbel 46,845–9 175 87 910.72 233.93

Barbel 46,846–2 1398 698.5 2977.61 120.33

Barbel 46,846–20 141 70 508.31 211.11

Barbel 46,846–4 339 169 927.15 159.55

Barbel 46,846–5 80 39.5 468.20 249.80

Barbel 46,846–8 364 181.5 475.79 118.89

Barbel 46,847–101 547 273 1773.41 115.75

Barbel 46,847–102 563 281 1372.83 116.01

Barbel 46,847–104 87 43 370.50 270.41

Barbel 46,847–105 776 387.5 1082.35 113.16

Barbel 46,847–106 163 81 392.77 191.74

Barbel 46,847–131 66 32.5 334.98 263.56

Barbel 46,847–137 192 95.5 427.44 125.43

Barbel 46,847–138 699 349 1016.05 265.88
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Table 6  (continued)

Species Track id Number of detections Duration (minutes) Total track length (m) Maximum 
displacement 
(m)

Barbel 46,847–142 74 36.5 297.46 252.19

Barbel 46,847–2 733 366 468.78 223.34

Barbel 46,847–26 108 53.5 431.19 158.95

Barbel 46,847–29 75 37 267.25 135.84

Barbel 46,847–4 165 82 207.95 122.47

Barbel 46,847–57 193 96 899.50 276.68

Barbel 46,847–58 70 34.5 290.39 227.57

Barbel 46,847–77 196 97.5 243.28 106.58

Barbel 46,848–10 184 91.5 1173.15 184.49

Barbel 46,848–11 325 162 1681.92 277.47

Barbel 46,848–12 101 50 587.19 165.22

Barbel 46,848–15 108 53.5 561.42 208.67

Barbel 46,848–2 228 113.5 175.27 107.89

Barbel 46,848–3 143 71 238.16 130.36

Barbel 46,849–10 280 139.5 662.69 145.93

Barbel 46,849–11 84 41.5 654.58 227.49

Barbel 46,849–12 83 41 315.35 274.92

Barbel 46,849–19 819 409 613.40 125.00

Barbel 46,849–20 611 305 536.25 138.41

Barbel 46,849–21 518 258.5 745.78 215.62

Barbel 46,849–24 199 99 265.20 122.80

Barbel 46,849–25 483 241 1167.38 147.45

Barbel 46,849–3 328 163.5 1374.70 150.04

Barbel 46,849–4 119 59 174.61 124.38

Barbel 46,849–7 118 58.5 576.44 130.93

Barbel 46,849–9 531 265 1046.08 241.60

Barbel 46,850–11 416 207.5 640.76 270.75

Barbel 46,850–13 65 32 317.14 117.33

Barbel 46,850–6 166 82.5 600.99 249.76

Barbel 46,851–27 63 31 279.17 172.87

Barbel 46,851–39 100 49.5 280.03 122.18

Barbel 46,851–41 73 36 392.06 214.83

Barbel 46,851–43 128 63.5 438.04 257.09

Barbel 46,851–45 73 36 384.18 251.18

Barbel 46,851–5 84 41.5 383.96 257.24

Barbel 46,851–53 80 39.5 338.02 255.87

Barbel 46,852–2 659 329 639.43 129.91

Barbel 46,852–3 1664 831.5 2100.91 141.61

Barbel 46,852–4 340 169.5 364.24 134.73

Barbel 46,852–7 199 99 1334.10 277.14

Barbel 46,852–8 985 492 2374.94 208.67

Barbel 46,852–9 161 80 858.97 277.20

Barbel 46,853–11 154 76.5 658.67 251.51

Barbel 46,853–14 109 54 743.68 238.13

Barbel 46,853–15 164 81.5 611.83 186.28

Barbel 46,853–2 89 44 419.99 119.09

Barbel 46,853–21 122 60.5 547.81 141.41

Barbel 46,853–22 632 315.5 745.14 182.10



Page 21 of 23Elings et al. Movement Ecology           (2023) 11:50 	

Table 6  (continued)

Species Track id Number of detections Duration (minutes) Total track length (m) Maximum 
displacement 
(m)

Barbel 46,853–8 210 104.5 1516.06 270.84

Barbel 46,853–9 101 50 674.40 123.75

Barbel 46,854–114 401 200 584.52 237.75

Barbel 46,854–123 231 115 484.11 177.77

Barbel 46,854–124 209 104 390.18 127.34

Barbel 46,854–131 74 36.5 430.19 246.19

Barbel 46,854–135 366 182.5 940.50 191.35

Barbel 46,854–14 72 35.5 438.03 272.69

Barbel 46,854–15 83 41 724.78 284.07

Barbel 46,854–21 100 49.5 710.50 210.45

Barbel 46,854–23 71 35 387.82 120.51

Barbel 46,854–27 94 46.5 475.64 246.98

Barbel 46,854–30 68 33.5 485.96 155.25

Barbel 46,854–4 91 45 346.96 127.89

Barbel 46,854–41 156 77.5 1202.55 280.31

Barbel 46,854–44 85 42 487.17 148.41

Barbel 46,854–46 204 101.5 1402.73 262.26

Barbel 46,854–47 168 83.5 707.82 208.23

Barbel 46,854–48 218 108.5 1221.04 150.20

Barbel 46,854–49 522 260.5 820.55 200.81

Barbel 46,854–50 71 35 299.12 248.36

Barbel 46,854–51 732 365.5 1166.61 247.99

Barbel 46,854–54 1342 670.5 2958.65 228.94

Barbel 46,854–57 217 108 427.84 245.54

Barbel 46,854–59 103 51 500.45 251.33

Barbel 46,854–79 63 31 318.54 100.96

Barbel 46,854–84 133 66 597.13 244.27

Barbel 46,855–14 220 109.5 608.47 103.13

Barbel 46,855–15 101 50 405.30 139.32

Barbel 46,855–16 157 78 1321.74 203.87

Barbel 46,855–21 102 50.5 600.15 292.26

Barbel 46,856–3 195 97 1084.99 217.91

Barbel 46,856–4 95 47 424.59 174.03

Barbel 46,856–5 84 41.5 495.96 215.96

Barbel 46,857–36 804 401.5 1107.25 178.93

Barbel 46,858–102 95 47 523.25 256.18

Barbel 46,858–104 96 47.5 202.38 135.76

Barbel 46,858–105 357 178 1159.60 131.84

Barbel 46,858–108 211 105 601.96 207.37

Barbel 46,858–117 902 450.5 3482.30 256.81

Barbel 46,858–119 1016 507.5 1698.74 222.88

Barbel 46,858–124 181 90 607.52 230.18

Barbel 46,858–129 117 58 644.67 270.40

Barbel 46,858–131 206 102.5 468.96 183.87

Barbel 46,858–2 651 325 1022.17 268.67

Barbel 46,858–24 85 42 400.54 136.77

Barbel 46,858–30 72 35.5 483.89 200.37

Barbel 46,858–46 324 161.5 1154.56 227.68
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