
Pinti et al. Movement Ecology           (2022) 10:60  
https://doi.org/10.1186/s40462-022-00362-1

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Using pseudo-absence models to test 
for environmental selection in marine 
movement ecology: the importance of sample 
size and selection strength
Jérôme Pinti1*, Matthew Shatley1, Aaron Carlisle1, Barbara A. Block2 and Matthew J. Oliver1 

Abstract 

Background: Understanding the selection of environmental conditions by animals requires knowledge of where 
they are, but also of where they could have been. Presence data can be accurately estimated by direct sampling, 
sightings, or through electronic tag deployments. However, absence data are harder to determine because absences 
are challenging to measure in an uncontrolled setting. To address this problem, ecologists have developed different 
methods for generating pseudo-absence data relying on theoretical movement models. These null models represent 
the movement of environmentally naive individuals, creating a set of locations that animals could have been if they 
were not exhibiting environmental selection.

Methods: Here, we use four different kinds of null animal movement models—Brownian motion, Lévy walks, Corre-
lated random walks, and Joint correlated random walks to test the ability and power of each of these null movement 
models to serve as appropriate animal absence models. We use Kolmogorov-Smirnov tests to detect environmental 
selection using two data sets, one of simulated animal tracks biased towards warmer sea surface temperatures, and 
one of 57 observed blue shark tracks of unknown sea surface temperature selection.

Results: The four different types of movement models showed minimal difference in the ability to serve as appro-
priate null models for environmental selection studies. Selection strength and sample size were more important in 
detecting true environmental selection. We show that this method can suffer from high false positive rates, especially 
in the case where animals are not selecting for specific environments. We provide estimates of test accuracy at differ-
ent sample sizes and selection strengths to avoid false positives when using this method.

Conclusion: We show how movement models can be used to generate pseudo-absences and test for habitat selec-
tion in marine organisms. While this approach efficiently detects environmental selection in marine organisms, it 
cannot detect the underlying mechanisms driving this selection.

Keywords: Movement ecology, Null models, Brownian motion, Random walks, Biotelemetry, Habitat selection, 
Environmental selection

Background
To understand the distribution of biodiversity in the 
ocean it is important to study how a particular species 
interacts with the physical environment [1]. The combi-
nation of biotelemetry (use of animal-borne electronic 
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tags to remotely collect movement and behavioral, physi-
ological, or environmental data and transmit these data 
to a receiver of some type) and ocean observations ena-
bles tracking individual organisms and their habitat use. 
This information provides the basis for understanding 
the autecology (e.g.  species ecology) of tracked species, 
and therefore their management and conservation.

Since the 1990s, advances in aquatic biotelemetry 
have fundamentally changed marine movement ecology 
research. Researchers have now electronically tagged and 
tracked tens of thousands of marine organisms, includ-
ing teleost and chondrichthyan fishes, marine reptiles, 
marine mammals, birds, and cephalopods [2–4]. These 
tracking technologies have provided researchers with a 
wealth of location and movement data of marine species. 
These observations include record migration distances 
[5], dive depth [6, 7] and duration [8], and the identifica-
tion of unexpected life-history features, such as the dis-
covery of the “white shark café” [9] or triennal migrations 
of soupfin sharks [10].

However, documenting observed movements alone 
does not always elucidate the underlying mechanisms 
that produced them. The movement patterns of an organ-
ism may resemble a theoretical movement model, but 
theoretical models do not capture the features or drivers 
of organismal movements. Quite the opposite, it is the 
sum of all external and internal factors and the animal’s 
individual capabilities that produced a track resembling 
that of a particular movement model [11]. Understanding 
the processes that lead to a specific movement is neces-
sary to assess how organisms may react to environmen-
tal changes [12]. As such, understanding these linkages 
is fundamental in predicting what our future oceans will 
look like.

Electronic tags come in a variety of types (ARGOS, 
archival, GPS, and acoustic tags) and many do not 
record oceanographic conditions along with their 
estimated position. However, some provide depth 
and temperature profiles [13, 14] and others provide 
sophisticated data equivalent to oceanographic CTDs 
[15, 16]. For the tags that only provide positions, their 
locations can be combined with other environmental 
data sets from ocean observatories to investigate the 
underlying mechanisms and drivers of movement and 
to begin to understand the autecology of a species. For 
example, when location data are combined with satel-
lite products, animal tracks can be used to investigate 
the drivers of shark vertical behaviors [13], the associa-
tion between pelagic predators and mesoscale eddies 
[17], or the impact of oil spills on sensitive marine spe-
cies [18]. At a finer spatial scale, high frequency radars 
can also help understand the link between Lagrangian 
oceanographic features and foraging [19]. These results 

can further be used to understand the conditions and 
mechanisms that shape animal movement, and under-
stand how they might change in a changing climate 
[20].

Environmental selection is inferred through the dif-
ference between used environmental conditions and the 
available background conditions. These available back-
ground conditions can be determined using absence or 
pseudo-absence data [21, 22], or sometimes a step-selec-
tion approach which uses a step (connecting two sequen-
tial observations) as the unit of measurement [23–26]. 
Environmental selection is absent if the environmental 
conditions experienced by an organism have the same 
distribution as those experienced by an environmentally 
naive organism. While tags provide a variety of quanti-
tative estimates of locations (presence of the organism), 
they cannot provide researchers with true absence data. 
The solution that is usually adopted is to use random 
walk models or other models (background sampling, ker-
nel densities, other movement models) to simulate envi-
ronmentally naive tracks that are used as distributions of 
pseudo-absences (“pseudo” because untagged animal dis-
tributions are unknown and may overlap with environ-
mentally naive tracks) [17–19, 22, 27–30]. Different kinds 
of null models are appropriate in different settings [22, 
31]. Without true absence data, using a large number of 
randomly generated pseudo-absences may be a reason-
able approximation that still allows for ecological insight 
[32]. However, different “random” models follow differ-
ent constraints which result in different pseudo-absence 
distributions.

Here, we examine four different movement models that 
generate pseudo-tracks which are then used as pseudo-
absences for environmentally naive organisms, to deter-
mine if their choice as a null model has any impact on 
the ability to detect environmental selection. We start 
by describing four different possible pseudo-absence 
movement models: Brownian motion, Lévy flight, Cor-
related random walk and Joint correlated random walk. 
Each of these models relies on drawing two values at 
each time step: one for the step length, and one for the 
bearing. The difference between these is in how these 
two parameters are constrained by underlying move-
ment theories. Then, we generate synthetic tracks (dis-
tinct from pseudo-tracks) that are biased towards high 
sea surface temperature (SST) to investigate how these 
generated pseudo-absences data can be used to test for 
environmental selection for SST. We then apply our 
method to 57 blue sharks tagged with Wildlife Computer 
SPOT tags in the North-East Pacific. Finally, we discuss 
important caveats for the interpretation of results using 
this method, including sample size, seasonality, and error 
rates.
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Methods
Data used in this study
Blue shark (Prionace glauca) tracking data used in the 
analyses were collected during the Tagging of Pacific 
Predators (TOPP) project [3], and processed in a state-
space model [33] resulting in a uniform 1 day temporal 
resolution across the dataset. The 57 blue sharks were 
tagged with Wildlife Computer SPOT tags between 
June 26th 2002 and November 1st 2009. Track lengths 
are between 8 and 349 days long (median of 88 days), 
resulting in 5572 daily blue shark position estimates in 
the North Pacific Ocean, with a median step length of 
32.7 km. The tracks used as illustrative example (Fig. 1) 
are 90 and 207 days long, from November 15th 2004 to 
February 12th 2005 (tag #160401201) and from July 25th 
2007 to February 16th 2008 (tag #160700501). Median 
step lengths of these tracks are 37.3 km and 29.3 km, 
respectively.

In addition to these directly observed tracks, synthetic 
tracks programmed to actively select for warmer sea sur-
face temperature (SST) were simulated. These simulated 
presence tracks will be referred to as synthetic tracks (as 
opposed to simulated pseudo-absence tracks presented 
in the following section). These tracks were 80 days long 
to reflect a “typical” blue shark track length in the TOPP 
data set. For these synthetic tracks, step length was fixed 
at 50 km per day, and turning angle was generated follow-
ing a Von Mises circular probability distribution [34] cen-
tred at the relative bearing corresponding to that of the 
highest SST within a 50 km radius (Fig. 2). The stronger 
the selection, the more likely the simulated animal will 

travel in the direction of the highest SST. κ is the concen-
tration (analogous to a standard deviation of a normal 
distribution) of the Von Mises distribution. κ = 0 means 
that organisms do not select for specific temperatures, 
while higher κ values mean stronger selection towards 
higher temperatures. Details of biased random walk 
simulation are provided in supplementary information 
1 for visual inspection of the effects of different values 
of κ . These synthetic tracks serve as an alternate “pres-
ence” with a known selection strength. For each value of 
κ tested (0, 0.25, 0.5, 0.75, 1, 2, 5, 10, 20), 100 synthetic 
tracks were created.

The environmental fields in this study are satel-
lite-derived sea surface temperature (SST) from 

Fig. 1 Observed blue shark tracks #160401201 (A) and #160700501 (B), overlaid on top of SST field for tag deployment day, November 15th 2004 
(A) and July 25th 2007. Triangle pointing down marks tag deployment, triangle pointing up marks tag pop-up location

Fig. 2 Von Mises distribution of relative bearing for movement 
models biased toward the highest temperature within a 50km radius 
for different values of κ
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MODIS-Aqua [35]. SST fields have a native 9 km spatial 
resolution. The native time step was 1 day, but each day 
consisted of a backward rolling average of the previous 8 
days to increase data coverage.

Null movement model generation
Step length and turning angle of observed blue shark tracks
To make sure our movement models had similar move-
ment characteristics to observed blue shark tracks, we 
estimated the distributions of the step lengths and turn-
ing angles of the 57 observed tracks. We used these dis-
tributions as a basis for constructing our four random 
movement models. The tracks were processed by a state-
space model [33] that regularizes the temporal distribu-
tion of positions and interpolates the track when raw 
ARGOS location estimates are missing. This interpola-
tion means that the turning angle distributions used here 
are probably straighter that that of the real shark path, 
which would slightly bias the creation of null movement 
models. However, this is not an issue as we are testing dif-
ferent kinds of null models, with different turning angle 
distributions (uniform or following the turning angle of 
the tracks—the turning angle of the real shark path being 
somewhere in between).

As the data are not normally distributed, we log-trans-
formed the initial data to compute means and standard 
deviation of the tracks (Fig. 3). To account for potential 
seasonal biases, step length parameters were computed 
monthly.

Brownian motion
Brownian motion mimics the random motion of particles 
colliding in a fluid [36]. In movement ecology, it is often 
used to model the diffusion of animals moving without a 
priori selection [19, 37, 38].

At each time step, the organism moves a distance �l 
in a random direction. This means that the turning angle 
is drawn from a uniform distribution bound between 
−180 and 180◦ . We drew �l from a Gaussian distribution 
with mean and standard deviation computed from the 
observed data.

These simulated tracks are a random sampling of the 
environment around the initial point according to the 
constraints of Brownian Motion (Fig.  4A and E). In 
Brownian Motion, diffusivity scales with the square root 
of time. Therefore, the movement is not bounded and it 
will eventually cross any circle of finite radius centred 
around the initial position given enough time. This is also 
one of the great advantages of Brownian motion. As such, 
to create a pseudo-absence track with unevenly spaced 
data (in case of e.g. missing presence data), the time step 
can just be multiplied by �tnew

�tref
 , with �tnew the time 

step required and �tref  the reference time step.
However, because Brownian motion is isotropic (mean-

ing that at each time step the organism is equally likely 
to go in any direction) it may not sufficiently approxi-
mate wide-ranging or migrating animals. One possibil-
ity is to model the movement as a Brownian bridge, that 
is a Brownian motion whose initial and final positions 
are fixed [39]. However, as Brownian bridges may also 
produce tracks that are not believable representations 
under some conditions (For example, long distance cen-
tral place foragers that have departure and arrival points 
close to each other), we are not using this method here. 
A pragmatic solution to this problem without applying 
a different movement model class with different con-
straints is to reset the Brownian track simulation to the 
actual animal position after a fixed period of time. In this 
study, the environmental sampling by the Brownian track 
is the aggregation of month-long Brownian tracks each 

Fig. 3 Characteristics of observed blue shark tracks. a Step length distribution (median 32.7 km), b turning angle distribution (median 0.0◦ ), c step 
length as a function of turning angle. Color of panel c mimics the density of data points in the turning angle-step length space: yellower areas have 
a higher density of data points
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starting at an actual organism location on the 1st of each 
month. This way, a simulated track would be constrained 
to the area around the real track and could still be reason-
ably considered to be in the same environment. For simi-
lar reasons, we will apply the same resampling strategy 
with the other movement models. To our knowledge, this 
is the first time that null movement tracks are created by 
restarting the track after fixed time intervals—except in 
the case of step selection functions, where each location 
serves as a new start point for the next step. The influ-
ence of the restarting time step on the resulting tracks 

and ensuing test results is further developed in supple-
mentary material 1.

Lévy flight
Another type of isotropic random walk is Lévy flight (or 
Lévy walk). Lévy flights are a mix of many short forag-
ing steps and fewer long relocation steps, hypothesised to 
mimic the optimal foraging of animals in a patchy envi-
ronment [40, 41]. Lévy flights have spurred the interest of 
many researchers and have been reported across a range 
of marine species, such as wandering albatrosses [42], 

Fig. 4 Pseudo-absence tracks (colors) and observed track (black). A–D Presence and pseudo-absence for track 160401201. E–H Presence and 
pseudo-absence for track 160700501. Tracks are overlaid on top of SST field for tag deployment day (November 15th 2004 for A–D, July 25th 2007 
for E-H). Triangle pointing down marks track beginning (either true beginning or beginning of month), triangle pointing up marks track end (either 
true end or end of month), and dates are the dates corresponding to the beginning of tracks (either true beginning or beginning of month). A, E 
Brownian motion track in red, B, F Lévy flight in blue, C,G Correlated Random Walk in purple, D, H Joint Correlated Random Walk in green
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pelagic fishes [43], and microzooplankton [44]. However, 
whether or not Lévy flights is a true movement model, or 
an emergent pattern dependent on other underlying con-
straints is subject to controversy [11, 45, 46]. Despite this, 
Lévy flights might still be a useful null movement model, 
as they often have a structure similar to that observed in 
animal data.

Lévy flights are characterised by a uniformly distrib-
uted turning angle, but the step length distribution is 
heavy-tailed and follows a power law: p(l) ∼ l−µ , with 
1 < µ ≤ 3 [47]. l is bounded by a minimum step length 
lmin that is strictly positive (here taken equal to 1m). µ 
has to be strictly greater than 1, otherwise the equality 
∫

inf

lmin
p(l)dl = 1 cannot be satisfied. Conversely, the condi-

tion µ ≤ 3 is needed to ensure infinite variance: the con-
trary would simulate Brownian-like motion [46].

A direct consequence of this choice is that the step 
length variance is infinite [11, 38], and that the probabil-
ity of extremely long jumps l decreases with probability 
l1−µ—but remains possible.

A pragmatic solution to prevent extreme step lengths is 
to simulate truncated Lévy flights, i.e. Lévy flights with a 
finite maximum step length lmax . This implies a finite step 
length variance and thus relaxes the condition on µ that 
now only needs to be positive. The step length probability 
distribution is then:

if µ  = 1 , and

if µ = 1.
Similarly to Brownian motion, the simulated Lévy 

tracks (Fig. 4B and F) allow for a random sampling of the 
environment but with different constraints. The presence 
of occasional longer time steps results in a qualitatively 
wider diffusion than Brownian motion.

Correlated random walk
Brownian motions and Lévy flights are isotropic move-
ments. However, in nature, most animals do not exhibit 
isotropic movements but tend to persist in their direction 
of movement (at least partly because of the cephalo-cau-
dal polarization and bilateral symmetry of many ani-
mals [48]). Correlated random walk (CRW) movement 
models account for this persistent directionality, where 
each turning angle is correlated to the previous one 
[38]. CRW movement models have been shown to have 

(1)p(l) =











0 if l < lmin
1−µ

l
1−µ
max−l

1−µ
min

l−µ if lmin < l < lmax

0 if lmax < l

(2)p(l) =







0 if l < lmin
1

ln(lmax)−ln(lmin)
l−µ

if lmin < l < lmax

0 if lmax < l

similar properties as locally moving animals [49], and 
some marine animals have been shown to display move-
ment patterns similar to CRW (e.g., [31]).

The step length of correlated random walks is gener-
ated from a distribution resulting in positive step lengths, 
such as an exponential or a gamma distribution. The 
turning angle of the animal is simulated with circular dis-
tributions that account for a preferential directionality, 
such as Von Mises or wrapped Cauchy distributions [34]. 
Determining which step length and turning angle distri-
bution to use can be circumvented by using the observed 
distribution of step length and turning angles to simulate 
a CRW movement model (Fig. 3a and b).

Resulting tracks look more similar to actual ani-
mal movements than Brownian motion or Lévy walks 
(Fig.  4C). Dividing step length and turning angle simu-
lation by months allows for a better representation of 
seasonal changes in behaviors. In the illustrated track, 
months with the strongest migration behavior (Novem-
ber to January) show a much straighter track than 
months with a more resident-like type of movement 
(August-October, Fig. 4C and G).

Joint correlated random walk
CRWs take into account the polarization of the animal, 
but treat step lengths and turning angles as separate, 
independent variables. This decouples step lengths from 
turning angles. In reality, step lengths and turning angles 
are often related, with longer step lengths having smaller 
turning angles, especially during pelagic migrations [50]. 
A way to consider this correlation is to draw from a sin-
gle, two-dimensional empirical probability distribution 
at each time step in the turning angle—step length space 
(Fig. 3c). This effectively means that long time steps with 
large turning angles have a low probability, thus increas-
ing the similitude between observed and simulated 
tracks while still having an environmentally naive model 
(Fig.  4D and H). If multivariate distributions that allow 
for correlated step lengths and turn angles need to be fit 
(e.g.  to avoid using empirical distributions), the method 
of copulae can be used [51].

Hypothesis testing
For each track (synthetic and observed), 100 tracks each 
of Brownian motion, Lévy walks, Correlated random 
walks, and Joint correlated random walks were simu-
lated (Fig. 5). We used these to examine the ability of this 
approach to detect prescribed environmental selection 
in simulated pelagic animals and to determine whether 
or not observed blue shark tracks show evidence of SST 
selection (Table 1).

Each position (presence, simulated presence, 
and pseudo absence (Table  1)) was matched to its 
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corresponding SST (sea surface temperature) value, 

derived from MODIS-AQUA SST fields (Fig. 1). For syn-
thetic tracks, the position of the (synthetic) organism is 
assumed to be perfectly known, so only the point value 
at that location was used. However, for real organisms, 
position is associated with a confidence interval based on 
error associated with position estimates. For real animals, 
SST value is computed assuming that the error follows a 
2D Gaussian distribution around the position estimate 
(i.e.  the closer the observation is to the estimated loca-
tion, the stronger the weight of this observation) with a 
standard deviation equal to 25% of the 95% confidence 

interval. Pseudo absences of real animals are assumed to 

follow the same structure, and uncertainties around each 
pseudo absence is the uncertainty of its corresponding 
presence point.

The resulting SST distributions are pictured in Fig.  6 
for synthetic tracks, and figure S8 for blue sharks. To test 
if there is evidence of selection in SST, we perform one-
sided Kolmogorov-Smirnov tests (ks.tests in the R stats 
package, R: A language and environment for statistical 
computing, R Development Core Team). Kolmogorov-
Smirnov tests (KS tests) are non-parametric tests com-
paring two cumulative distributions. The KS test statistic 

Table 1 Summary of the presence and pseudo-absence data used in this study, and their associated research question

Presence Pseudo-absence Research question

Synthetic tracks (Biased Random Walk, κ = 20) Brownian motion, Lévy walk, CRW & JCRW Can this method detect strong 
environmental selection?

... ... ...

Synthetic tracks (Biased Random Walk, κ = 0.25) Brownian motion, Lévy walk, CRW & JCRW Can this method detect weak envi-
ronmental selection?

Synthetic tracks (Biased Random Walk, κ = 0) Brownian motion, Lévy walk, CRW & JCRW Can this method detect the absence 
of environmental selection?

Blue shark tracks Brownian motion, Lévy walk, CRW & JCRW Do blue sharks select for particular 
SST conditions?

Fig. 5 Maps of presence and pseudo-absences for blue shark #160401201 (A), blue shark #160700501 (B), and for all tagged blue sharks (C), 
respectively. The columns are for the tagged animals (presence), Brownian motion, Lévy walk, correlated random walk, and joint correlated random 
walk respectively
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D is the maximum distance between the two cumulative 
distributions. In one-sided tests, we test the null hypoth-
esis that the cumulative distribution of SST for presences 
is “not less than” (or “not greater than”) pseudo-absences 
SST distributions. For the “not less than test”, if the null 
hypothesis is rejected it means that the presence cumu-
lative distribution function is below that of the pseudo-
absence. This means that the temperature distributions 
are shifted toward higher temperatures, and that animals 
select for warmer waters compared to environmentally 
naive organisms. Conversely, for the “greater than” test, it 
means that animals select for colder waters than environ-
mentally naive organisms). Throughout this manuscript 
and unless specified otherwise, tests are assumed signifi-
cant for p-values ≤ 0.05.

Results
Synthetic tracks
We tested each 80-day synthetic track for environmental 
selection. For κ > 2 , the results are consistent with what 
we should expect: nearly all tests for higher SST selection 
are significant and nearly no test for lower SST selec-
tion is significant (Fig. 7). However, when the strength of 
selection decreases ( κ < 2 ), the fraction of false-positive 

(significant tests for lower SST selection) and false-nega-
tive (non-significant tests for higher SST selection) tests 
significantly increases. For κ = 0 when no test should 
yield significant result, approx.  40 % of all tracks show 
signs of selection for warmer temperatures, and 40% for 
colder temperatures when testing one 80-day track at a 
time. All these rates appear to be similar across the range 
of null models tested (Brownian motion, Lévy walks, 
Correlated Random walks, Joint Correlated Random 
walks, or the aggregation of these four). The strength of 
the selection (test statistic D) appears to vary widely for 
all values of κ , with a slight increase in strength for tests 
for higher SST selection as synthetic tracks select more 
and more strongly warmer temperatures (Fig. 7B). Inter-
estingly, when there is no selection, CRW and JD pseudo-
absences are generated following the same set of rules as 
presence data, but false-positive results still arise at low 
sample sizes.

One of the parameters that influence the most test 
results is sample size. Here, all synthetic tracks are 80 
days long, which is a “typical” track length of a blue shark 
from the TOPP data set, but in reality, this limited track 
duration makes it difficult to avoid both false positive and 
false negative results [52]. One way to solve this issue 

Fig. 6 Density distribution (A, C, E) and cumulative distribution (B, D, F) of SST at synthetic presence and pseudo-absence points, for presence 
tracks strongly biased towards high temperatures (A and B), presence tracks weakly biased towards high temperatures (C and D), and presence 
tracks with no temperature bias (E and F)
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is to aggregate multiple tracks together to increase the 
ability of KS tests to detect the presence of environmen-
tal selection. We investigate the fraction of significant 
results depending on the number of synthetic 80-day 
tracks aggregated together (Fig.  8). For relatively weak 
temperature selection ( κ = 0.5 ), we get to 100% cor-
rect predictions as soon as we aggregate 1200 days (15 
80-day tracks) of track time. For very weak temperature 
selection ( κ = 0.25 ), perfect assessment of selection is 
only achieved with more than 17.5 years of total tracking 
time (or 80 80-day tracks). The hardest case to detect is 
when there is no environmental selection, as false posi-
tive results are still present even when the entire data 
set (100 tracks or 8000 days of track data) is aggregated. 
More concerning, tests performed with Lévy walks as 
pseudo absence data seem to converge towards 100% 
significant results for the lower SST selection alterna-
tive, meaning that acquiring more data would incor-
rectly predict that these organisms (not selecting for 
temperature in any way) select for colder temperatures. 
Fraction of correct (i.e.  non-significant tests for lower 
SST selection and significant tests for higher SST selec-
tion) results as a function of selection strength and total 
tracked time are summarized in Fig.  9. Predictably, the 

stronger the selection, the fewer data needed to get cor-
rect results. For weak selections, it would appear that ∼ 4 
years of daily data can already lead to acceptable results, 
whereas the no selection case would require more than 
20 years worth of daily data to be confident that no selec-
tion exists. This means that, with a limited sample size 
of observed tracks, detecting environmental selection is 
difficult.

Decreasing the p-value threshold for significance 
decreases the rate of false positives. Therefore, we can 
investigate how the rate of false-positivity increases 
when the p-value threshold changes (Fig.  10). As 
expected, when the threshold for significance is 
reduced, the fraction of tracks correctly categorized 
as “non-selecting” for higher or lower SST increases. 
With p = 10

−6 , 100% of the tests yield correct results 
as soon as we have more than 8 years of track time 
(assuming one location per day per track). With 
p = 10

−6 , this success rate is attained with  5 years of 
tracking data. Similarly, we can investigate the rate 
of false-positive and false-negative results for tracks 
with a weak SST selection (Additional file  1: Figs. S10 
and S11). As expected, rate of false negative increases 
when the threshold for significance is decreased, but 

Fig. 7 Fraction of significant KS tests with bootstrapped 95% confidence intervals (A, C), and test statistic D for statistically significant results (B, D) 
as a function of κ . Top (A, B): Tests for higher SST selection. Bottom (C, D): Tests with lower SST selection
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the fraction of false positive results is very low as soon 
as the p-value threshold for significance is below 10−6 . 
As such, selection results with p < 10

−6 can be consid-
ered reliable with as little as two years worth of tracking 
data (even with a weak selection), while non-selection 

results are reliable with p < 10
−7 and more than 8 years 

of data.

Fig. 8 Fraction of significant test results as a function of the number of tracks considered for different values of κ , along with bootstrapped 95% 
confidence intervals. Top (A, C, E): Tests for higher SST selection. Bottom (B, D, F): Tests for lower SST selection

Fig. 9 Fraction of correct test results (for both tests) as a function of dataset size and strength of temperature selection
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Temperature selection in blue sharks tracked with ARGOS 
SPOT tags
Testing SST selection in individual blue sharks tracked 
with ARGOS SPOT tags yields contrasting results 
(Fig.  11). More than 55 % of tracks have no signifi-
cant result, which could indicate that blue sharks do 
not select for specific SST, or that tracks are not long 
enough to get significant results (see Figs.  9 and 10). 
Around 8% of blue sharks seem to select for colder 
SST, and 35 % seem to select for warmer SST. Fur-
ther, we investigate the six longest tracks available for 
which we have more than 200 days of data (Additional 

file 1: Fig. S9). Out of these six tracks, 5 (all but track 
#160400601) reveal significant selection for warmer 
SST, while the remaining one does not reveal any selec-
tion (for warmer or colder SST).

A way to increase confidence in results is to increase 
sample size, which can be done by aggregating tracks 
together. However, as temperature selection can be 
seasonal, we aggregate tracks at different time scales—
from a monthly scale to a yearly scale. Tables  2 and 3 
summarize the KS test results in the case where pseudo 
absences are all null models taken together.Tables 2 and 
3 were not color-coded based on p value only, but based 
on p-value and sample size, following our analysis of 
the previous section. A green cell means that selec-
tion was detected with more than 90 % confidence that 
it was not a false-positive result, and a red cell means 
that no selection could be confidently assessed. KS test 
results for all specific null models as absence data are 
given in supplementary information 2. There is little 
variation in test significance among the different null 
movement models.

At quarterly (or longer) time scales, all tests for higher 
temperature selection are significant, and no tests for 
lower temperature selection is significant, strongly 
suggesting that blue sharks tend, overall, to select for 
warmer temperatures. At finer scales, however, there 
are differences and no selection could be detected 
between February and July and in September–October. 
These seasonal differences might be due to seasonal 
variations in blue shark behavior (i.e.  migrations), but 

Fig. 10 Fraction of correct test results as a function of dataset size and p value threshold for significance, when κ = 0 (no SST selection). Red colors 
are false-positive results, whereas blue colors display correct results for both tests (no selection)
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Fig. 11 Fraction of blue shark tracks with both one-sided KS tests 
significant (0/57), one significant KS test (5/57 and 20/57), and no 
significant test (32/57), and associated bootstrapped 95% confidence 
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this is beyond the scope of this paper and these results 
are not reliable given our findings from the previous 
section and the limited number of observations for 
each month.

Discussion
In this analysis, we tested four different kinds of null 
movement models and showed how they could be used 
to test for environmental selection in marine animals, 

both with simulated synthetic tracks and observed blue 
shark tracks. The method presented here can be used to 
assess whether organisms select for specific conditions, 
provided with a large enough sample size and a strong 
enough selection (the sample size needed to assess 
selection decreases as the selection strength increases).

Table 2 Summary of KS test results (selection for higher SST) for blue sharks at different aggregating scales

n refers to the sample size of observed blue sharks, D to the test statistic, and p to the p-value of the test. Cells are color-coded following the confidence in the test 
being correct, following the analysis of the previous section

Table 3 Summary of KS test results (selection for lower SST) for blue sharks at different aggregating scales

n refers to the sample size of observed blue sharks, D to the test statistic, and p to the p-value of the test. Cells are color-coded following the confidence in the test 
being correct, following the analysis of the previous section
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Synthetic tracks analysis
Of the four null movement models we tested, Lévy walk 
has the highest rate of false positivity, and we caution 
its use as a null movement model (cf.  Fig.  8B). In addi-
tion, many other types of null models exist and could be 
used for such study. For example, previous studies have 
simply rotated the entire track from the departure point, 
reshuffled the sampling dates [53], or estimated kernel 
densities and convex hulls [22, 31]. Variants of random 
walk models can also be developed, such as selecting ran-
dom turning angles and drawing a step length not from 
a theoretical distribution (such as for Brownian motions 
and Lévy walks) but from empirical data [54], or creat-
ing reverse walks, i.e.  starting the walk from the last 
known animal position and going backward in time [22]. 
Some of these methods are more appropriate than oth-
ers depending on the study location or the question one 
tries to answer. For example, reshuffling dates and rotat-
ing tracks are more appropriate in land animal studies 
or when the animal does not wander too far off its home 
range, as this might otherwise lead to pseudo-absences in 
locations that are not accessible to the animal. A recent 
study found that when building habitat suitability mod-
els, the separation in environmental niche between 
presence and pseudo-absence was the most important 
driver of model explanatory power [22]. For blue whales 
tagged with ARGOS tags in the eastern North Pacific, 
this resulted in using background sampling, i.e. a random 
sampling of the entire study region.

Yet, random samplings of study locations may not 
be appropriate for all research questions, and different 
null models can be appropriate in different settings. In 
particular, Austin et  al.  [31] showed that home range 
indices (such as kernel home ranges) provide a single 
picture of the area occupied by an animal without con-
sidering the mechanisms and decisions that led the ani-
mal to move across the landscape. Using models based 
on complete spatial randomness may over-simplify 
the problem and lead to the “Jack Horner effect” [53, 
55]—incorrectly rejecting the null hypothesis because 
the observed pattern is different from the null distri-
bution because the null distribution is unreasonable. 
For example, a trivial null movement model would be 
comparing the SST of a basin scale migrator to the SST 
of a pseudo-animal that never moves far (e.g. a Brown-
ian motion that is not periodically restarted). The fact 
that their SST distributions are significantly differ-
ent is a trivial result based on global SST gradients, 
and not on environmental selection by the individual. 
At the other end of the spectrum, overly specified null 
models (e.g.  null models restarted too frequently, for 
example every week or more) could mimic exactly the 
observed distribution, therefore leading to an incorrect 

validation of the null hypothesis – this is called the 
“Narcissus effect” [53]. To decrease the probability of 
drawing incorrect conclusions due to either of these 
effects, we recommend using an ensemble of null 
movement models [53, 56], as we have done here.

Another approach to habitat selection is step selec-
tion functions [23, 24, 26]. Step-selection approaches use 
a step (connecting two sequential observations) as the 
unit of measurement. The observed animal step is then 
compared to simulated steps, each time leaving from 
an observed animal position. This approach has several 
advantages, as it provides a way to simultaneously esti-
mate parameters describing both movement and habitat 
selection processes [25, 26, 57], and as it can consider 
multiple environmental factors simultaneously and quan-
tify complex selection patterns (e.g.  quadratic effects 
where individuals select for medium values but avoid 
extremes—something that our approach relying on KS 
tests cannot do). It is possible to include random effects 
to account for correlation arising from consecutive steps 
(e.g. [58]), but all simulated random steps leave from an 
actual animal position, meaning that the available loca-
tions sampled will never be more than one step length 
away from the animal. This is adequate for fine-scale hab-
itat selection, but it might bias medium- or large-scale 
habitat selection results, especially in marine organisms 
that routinely perform large relocation movements over 
several days to encounter more favourable conditions.

The strength of SST selection in synthetic tracks was 
determined by κ , i.e. the concentration of the Von Mises 
distribution relative to the direction of the highest SST 
within a 50 km radius. This metric is hard to relate to real 
animals as we do not know how strongly they might be 
selecting for SST or other environmental variables (and if 
we did there would not be a need for this study). Moreo-
ver, animals do not select for a single environmental fac-
tor such as SST, but likely combine different factors to 
increase their fitness. For example, oxygen concentra-
tion at depth for deep divers [59], or prey fields for large 
predators [60], are factors that are likely to influence and 
modify how an organism reacts to other environmental 
variables such as SST. Null models can, to some extent, 
help tease these effects apart and account for some of the 
known processes driving movement. For example, biased 
random walks can take into account the urge to migrate 
driven by external cues [61]. Current advection can be 
added to random walk for planktonic and small nektonic 
organisms. Memory, perception, potential environmen-
tal cues, and cost of locomotion can be implemented in 
random walk models [62, 63]. Taking into account these 
processes enables to ensure that they do not cloud poten-
tial results, thus helping to understand the importance of 
different environmental factors separately.



Page 14 of 17Pinti et al. Movement Ecology           (2022) 10:60 

Finally, and as expected, selection results change when 
varying sample size and significance level. However, per-
forming multiple tests increases the family-wise error 
rate (FWER), which is the probability of getting at least 
one false-positive in the series of tests performed. Here, 
for each selection of strength and sample size, we per-
formed 100 different tests to get bootstrap estimates of 
our results. This explains in part why our rate of false-
positive results is high. FWER can be kept at a pre-
defined level by applying corrections such as a Bonferroni 
correction to the significance level (i.e. dividing the sig-
nificance level by the number of tests performed). Here, 
we did not apply a Bonferroni correction as we knew the 
results to expect and wanted to test the strength of our 
method, and as future researchers willing to apply this 
method may not have enough data to perform multiple 
tests. Nevertheless, applying a Bonferroni correction 
does not change qualitatively our results (Additional 
file 1: Fig. S12), and the impact of modifying the signifi-
cance level (which is essentially what a Bonferroni cor-
rection is) can be seen Figs. 10, S10, and S11.

Observed blue shark tracks
Our case study (n = 57) concluded that blue sharks select 
(most of the time) for higher SST than environmentally 
naive organisms. The selection here is a “realized selec-
tion”, i.e.  this selection emerges from the track but may 
not be the ultimate factor driving the movement. Based 
on this analysis, while we found that there was selection, 
we cannot ascertain the reasons why blue sharks select 
for higher SST (or other environmental parameters cor-
related with SST noting that, unlike synthetic organisms, 
blue sharks do not have a complete knowledge of SST 
gradients around them). For example, as most of the tags 
in this study were deployed in cooler foraging grounds of 
the California Current and animals tend to move south 
afterwards, our signal could be due to the species’ sea-
sonal urge to migrate southward. Dividing the dataset in 
different temporal periods allows us to address that issue 
by investigating locations visited by the individuals sev-
eral months after tagging—thus not biased by the spatio-
temporal constraints associated with the tagging itself. 
In this particular case, as blue sharks are ectothermic 
animals using surface waters to warm themselves before 
diving down to depths of ∼400 m [64], it seems reason-
able to hypothesize that blue sharks do indeed select for 
warmer SSTs for ecologically (prey distribution) or physi-
ologically relevant reasons (thermoregulation, reproduc-
tive activities).

Testing hypothesis at the individual level is seldom pos-
sible because of the amount of data required to have sta-
tistically meaningful results. Aggregating data sets is an 
efficient way to increase sample size. Sequeira et al. [52] 

estimate that the identification of trait-specific behaviors 
and spatio-temporal patterns require between 10 and 
100 different tracks (depending on tracks’ length). On 
the contrary, assessing spatio-temporal changes in habi-
tat use or performing multispecies assessments at large 
spatial scales requires more than 100 tracked individuals. 
With this blue shark data set, more than ∼ 10 tracks cor-
respond to an aggregation at the bimonthly to quarterly 
scale—scales at which results suggest that blue sharks 
select for higher SST, except in March-April.

Moreover, tracks, at least those based on ARGOS or 
GPS based tags, are biased by the (sometimes random 
or irregular) surfacing behavior of tagged individuals 
as ARGOS and GPS tags can only transmit data when 
individuals spend time at the surface. This has two main 
consequences. First, it means that our observations and 
results are biased towards the surface and that animals 
may in fact be selecting for specific environmental condi-
tions deeper in the water column where they may spend 
more time. Second, it means that our knowledge of the 
position of individuals is sometimes imprecise, at times 
quite so (10’s to 100’s of kms). ARGOS data are generally 
processed using a state-space model [33] that interpolates 
between each data point (that already has some uncer-
tainty, quantified by the location class of the ARGOS fix) 
to produce a track with a daily resolution. In addition 
to the location class of ARGOS fixes, confidence inter-
vals of the processed track depends on the time interval 
between the processed data point and an ARGOS loca-
tion fix. In our study, the SST used for locations with 
high uncertainties (and their corresponding pseudo-
absences) is averaged over that large range of uncertainty. 
Consequently, the differences between presence SST and 
pseudo-absences SST will be minor, and we are unlikely 
to detect selection for that data point. Then, it appears 
that the confidence intervals (determined by the quality 
and frequency of raw data) will influence the rate of false-
negative results, but not false-positive results (i.e.  we 
detect selection less often than there actually is because 
the signal is “blurred” by the uncertainty). Increasing 
track accuracy may increase the rate of selection detected 
in individual tracks (but not much as most of these tracks 
are too short to confidently detect a signal), but it will 
modify results at the quarterly scale and above as we are 
already detecting selection at these scales. Investigating 
the influence of reporting quality and accuracy on envi-
ronmental selection detection is an important venue for 
future research.

We investigated the differences between satellite-
extracted and in-situ SST recorded by pop-up satellite 
archival tags (PAT or PSAT tags) for four blue sharks 
that were double-tagged with PAT and ARGOS tags. 
Even though results are very similar (see section C of the 
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supplementary material and Additional file 1: Fig. S7), in-
situ SST is higher than satellite SST when ARGOS tags 
are not transmitting data for a few days. The fact that 
ARGOS tags do not transmit data when sharks are expe-
riencing higher SST might also indicate that the water 
is too warm for blue sharks there, or that blue sharks do 
not need to go all the way to the surface when the water 
column temperature is high enough, a behavior known 
as tropical submergence and previously reported in blue 
sharks [65]. Nevertheless, this consideration emphasizes 
that track accuracy and frequency of reporting is impor-
tant to consider when testing for environmental selec-
tion in marine organisms. This could be tested further 
on animals tagged with both ARGOS and fast-loc GPS 
tags such as elephant seals. Elephant seals are ideal study 
animals for this question: as air breathers they need to 
surface regularly, and plenty of data already exist as they 
have been extensively tagged to monitor hydrographic 
conditions in the Southern Ocean [15].

Conclusion
Given sufficient selection strength and sample size, the 
method presented here captures environmental selection 
of marine predators. This method can suffer from high 
false positive rates, especially in the absence of true selec-
tion. Our analysis with synthetic tracks quantifies the 
robustness of the method in different configurations.

KS tests as presented here only test whether organisms 
select for higher or lower values than environmentally 
naive organisms (represented by the four null movement 
models) would, but not if they select for particular SST 
values. Investigating the response and preference of indi-
viduals to a wide range of temperatures (and not selec-
tion for higher or lower temperatures) would further our 
understanding of the autecology of the studied species. 
The selection for optimal environmental conditions can 
be assessed with, for example, habitat selection or species 
distribution models [20]. Except for models that rely on 
count data rather than presence/absence, the same types 
of null models can be used in these modelling frame-
works for generating pseudo absence data [21]. They can 
then further be used to provide predictions of habitat 
shifts in a changing climate [20].

A question that remains open are the spatial and tem-
poral scales at which animals perform selection. In this 
study, our synthetic tracks selected higher temperatures 
at a daily scale, at a range of 50 km, on an 8 day average of 
SST values. These scales could have easily been changed 
for different synthetic tracks. For real animal tracks, the 
answer to this question is clouded by the scales at which 
data are acquired and at which our analysis is performed. 
But animals, especially large pelagic predators, may also 
select environmental conditions at a larger scale than 

9 km. In this case, regridding satellite products at mul-
tiple spatio-temporal grains could help answer these 
questions.
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