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Abstract 

Background: Change in behavior is one of the earliest responses to variation in habitat suitability. It is therefore 
important to understand the conditions that promote different behaviors, particularly in areas undergoing environ‑
mental change. Animal movement is tightly linked to behavior and remote tracking can be used to study ethology 
when direct observation is not possible.

Methods: We used movement data from 14 polar bears (Ursus maritimus) in Hudson Bay, Canada, during the forag‑
ing season (January–June), when bears inhabit the sea ice. We developed an error‑tolerant method to correct for sea 
ice drift in tracking data. Next, we used hidden Markov models with movement and orientation relative to wind to 
study three behaviors (stationary, area‑restricted search, and olfactory search) and examine effects of 11 covariates on 
behavior.

Results: Polar bears spent approximately 47% of their time in the stationary drift state, 29% in olfactory search, and 
24% in area‑restricted search. High energy behaviors occurred later in the day (around 20:00) compared to other 
populations. Second, olfactory search increased as the season progressed, which may reflect a shift in foraging strat‑
egy from still‑hunting to active search linked to a shift in seal availability (i.e., increase in haul‑outs from winter to the 
spring pupping and molting seasons). Last, we found spatial patterns of distribution linked to season, ice concentra‑
tion, and bear age that may be tied to habitat quality and competitive exclusion.

Conclusions: Our observations were generally consistent with predictions of the marginal value theorem, and differ‑
ences between our findings and other populations could be explained by regional or temporal variation in resource 
availability. Our novel movement analyses and finding can help identify periods, regions, and conditions of critical 
habitat.
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Background
Animals exhibit a broad diversity of behaviors to meet 
their needs for survival, growth, and reproduction. Each 
behavior has consequences to the individual and has 

distinct relationships with the external environment [112, 
163]. Changes in behavior and their associated movement 
patterns may represent the earliest measurable response 
to variation in habitat suitability and potential effects of 
environmental change [16, 164]. For example, optimal 
foraging theory and the marginal value theorem predict 
that time spent in a resident state increases with patch 
quality [21, 100, 119]. Understanding the spatial and 
environmental determinants of animal behavior is central 
to ecology and conservation. Identifying the factors that 
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promote different behaviors may be particularly impor-
tant in areas experiencing rapid environmental change or 
where animals occupy the limits of their realized niche. 
In these areas, shifts in occupied states or time budg-
ets may precede other indicators of habitat quality (e.g., 
body condition, reproductive success, or survival; [16, 28, 
164]). For example, Alaskan moose (Alces alces) exhibit 
strongest selection for denser canopy cover at the north-
ern and southern limits of their range [67], and tropical 
songbirds exhibit strongest intraspecific territoriality 
closer to the limit of their altitudinal range [66].

The Arctic is warming at several times the global aver-
age, resulting in reduced sea-ice extent and a prolonged 
ice-free period [76, 80, 103, 130, 150]. The reductions in 
sea ice have caused a shift toward smaller primary and 
secondary producers [29, 167], and negatively affected 
Arctic fish [24, 98] and pinnipeds [56, 62, 136]. Polar 
bears (Ursus maritimus) rely on sea ice as a platform to 
access their primary prey, ringed seals (Pusa hispida) and 
bearded seals (Erignathus barbatus), as well as for repro-
duction and travel [45, 48, 140, 148]. Reduction in sea 
ice has led to an increase in the energetic cost of travel. 
Greater habitat fragmentation has increased polar bear 
path tortuosity [9], more open water has increased the 
frequency of long-distance swimming events [105, 115], 
and increased ice drift speed has increased the cost of sta-
tion-keeping [5, 34, 90]. Further, polar bears have exhib-
ited shifts in distribution [85], reduced access to prey [45, 
147, 160], a longer fasting period [127], increased expo-
sure to zoonotic pathogens [116], higher levels of cortisol 
[13], reduced body condition [127, 144], reduced access 
to denning habitat [96, 127], reduced reproduction [146], 
and consequently reduced abundance in several popula-
tions [14, 87, 101, 123, 124]. The ecological effects of cli-
mate change on polar bears are population specific. For 
example, a group of polar bears near the southern limit of 
the East Greenland subpopulation offset reduced sea ice 
by using a glacial mélange for year-round access to prey 
[82]. In addition, in parts of the high Arctic, increasing 
temperatures may have led to a regime shift from his-
torically unproductive multi-year ice to more productive 
seasonal pack ice and consequently stable or increasing 
polar bear populations (e.g., M’Clintock Channel and 
Gulf of Boothia; [36, 37]). Many of the effects of climate 
change on polar bears are associated with behavioral 
shifts including changes in foraging [47], migration [107, 
115], and denning strategies [38, 102].

Polar bears exhibit a diversity of behaviors to success-
fully exploit the spatiotemporally dynamic sea-ice habi-
tat (Fig.  1; [104, 138, 161]). In areas of seasonal sea ice, 
polar bears migrate between the terrestrial refugia and 
on-ice foraging grounds [11, 22]. They exhibit philopa-
try to their summering grounds and compensate for sea 

ice motion in their navigation and for station keeping [5, 
34, 74, 90]. Polar bears rely both on visual and olfactory 
search to hunt sparsely distributed prey [133, 138], which 
may be influenced by presence of daylight [152, 153]. 
However, the expansive and remote nature of their habi-
tat impedes behavioral research. Direct observational 
research (e.g., [65, 138]) is limited in spatial or temporal 
extent. Insight into polar bear ecology across larger spa-
tiotemporal scales often relies on remote tracking data, 
however these studies are typically not behaviorally-
explicit (e.g., [35, 75, 81, 92]). Although there have been a 
few large-scale multi-behavioral studies using polar bear 
telemetry (e.g., [4, 107, 161]), these were either limited to 
two simple behavioral states (e.g., active or inactive) or 
did not investigate associations between behaviors and 
the environment.

Recent advances in data acquisition [99] and analytical 
methods (e.g., [94, 155]) have enabled the identification of 
more intricate behaviors and research at an increasingly 
large scale and resolution. Pagano et  al. [104] described 
the use of accelerometers to identify up to ten fine-scale 
behaviors, and Pagano et al. [107] used a combination of 
accelerometer data and conductivity sensors to identify 
resting, walking, and swimming. Unfortunately, most 
existing telemetry datasets do not lend themselves to 
many of the newer analytical methods because they lack 
necessary auxiliary data (i.e., they only estimate tag loca-
tion). However, Togunov et al. [155] described the use of 
location data in combination with wind to identify up to 
three behavioral states, a method readily applicable to 
most existing polar bear movement data.

Fig. 1 Illustration of polar bear behavior and movement. Polar bear 
track drifting ≈ 15

◦ relative to wind (gray) when stationary on sea 
ice (e.g., when still‑hunting by breathing hole; blue), moving ≈ 90

◦ 
relative to wind during olfactory search (red) to maximize probability 
of encountering odor plumes (purple), and random movement 
relative to wind during area‑restricted search (purple track). 
Reproduced with permission from [155]



Page 3 of 20Togunov et al. Movement Ecology  2022, 10(1):50 

Using remote tracking data for behavioral research is 
further complicated by sea ice motion. The motion of 
sea ice is imparted on the polar bear track, changes the 
apparent speed and orientation, and complicates behav-
ior characterization and classification [5, 50, 155]. The 
conventional method used to remove sea ice motion is to 
subtract satellite-based estimates of ice velocity from the 
movement track (e.g., [5, 10, 74]), however, this approach 
assumes there is negligible bias in the sea ice motion data, 
which is typically not the case [31, 154, 165]. Rather than 
correcting for drift, it is often more accurate to integrate 
the motion of the environment into the movement model 
(e.g., [69, 94, 155]). McClintock and Michelot [94] and 
Johnson et  al. [69] described observed movement as a 
trade-off between directional persistence and bias toward 
wind or ocean currents. However, because environmen-
tal flow affects the animal’s movement, the observed 
track does not reflect the voluntary movement/orienta-
tion of the animal. Similarly, Togunov et al. [155] identi-
fied periods where the bear was stationary and passively 
drifting on the sea ice by describing the movement as a 
random walk with bias toward a constant angle relative to 
wind (Fig. 1). However, ice motion affects the movement 
of non-stationary behaviors, which was not accounted 
for in Togunov et  al. [155] and may lead to misclassifi-
cation. One of the fundamental challenges of identify-
ing voluntary movement is that both observed bearing 
and movement speed depend on animal direction and 
speed, such that a change in either animal speed or direc-
tion influences both the observed step length and turning 
angle (see Appendix D). To our understanding, there is 
no statistical movement model that can simultaneously 
estimate parameters of behavior-specific movement and 
environment-induced motion.

Given climate change induced alterations of sea ice, we 
were interested in understanding how polar bears change 
their behavior in space and time and how these behaviors 
were affected by environmental variability. Our objec-
tives were to: (1) develop a sea ice motion correction 
model that accounts for error in satellite-based estimates, 
(2) examine behavior time budgets during the winter for-
aging period, (3) identify factors associated with different 
behaviors, and (4) examine broad-scale and behavior-
specific habitat use.

Methods
Study area and telemetry data
Hudson Bay, Canada is a large inland sea with an area of 
830,000  km2 (Fig.  2; [118]). The Bay is characterized by 
seasonally-present sea ice, which begins to form during 
freeze-up in late November. The ice covers the majority 
of the Bay from January to May and is comprised pri-
marily of drifting pack ice and a 10–15  km wide fringe 

of land-fast ice [42, 83]. The sea ice concentration begins 
to decline in May, typically reaching 50% cover in early 
July, and melting completely by early August [30, 129]. 
The focal period of this study was January to July, repre-
senting the primary feeding and mating period and the 
subsequent decline in sea ice (i.e., break-up).

As part of a long-term study of the population ecol-
ogy of polar bears in Western Hudson Bay [87, 122, 123, 
146], 107 adult females with cubs were tranquilized from 
helicopters [145] during the summers of 2010–2019 
and equipped with  Argos®  or  Iridium®  satellite-linked 
global positioning system (GPS) collars (Telonics, Mesa, 
AZ). Lone females were not collared as they may have 
been pregnant and would remain in maternity dens up 
to seven months after collaring. Males were not collared 
because their neck circumference is greater than that of 
their head and would not retain collars. Tagging was per-
formed primarily in the Western Hudson Bay polar bears’ 
summering and denning grounds in Wapusk National 
Park, Manitoba (Fig. 2; [43, 126, 139]). To determine age, 
a vestigial premolar was extracted from each bear whose 
age was unknown (i.e., bears > 1.5 years that were not 
previously captured), and age was determined by count-
ing annuli in the cementum [19]. The animal handling 
protocols performed were approved by the University of 
Alberta Animal Care and Use Committee for Biosciences 
(permit numbers: AUP00000033 and AUP00003667) and 
by the Environment Canada Prairie and Northern Region 
Animal Care Committee.

The collars were programmed to last two years after 
which they would release on a predefined date. Of the 
107 collars deployed, 79 obtained locations every 4  h, 
25 collars obtained locations every 2 h, and three collars 
obtained locations every 30 min. A preliminary analysis 
indicated that the 4-h collars could reliably only iden-
tify two behaviors (data not shown). To identify at least 
three behaviors, we used only the collars at 2-h or 30-min 
frequency, and we sampled the 30-min data to a 2-h fre-
quency. The bear locations were projected into a Uni-
versal Transverse Mercator coordinate reference system 
(NAD83 Teranet Ontario Lambert, EPSG: 5321).

We used hidden Markov models (HMM) to investi-
gate the relationship of different behavioral states in 
relation to environmental covariates. The classic HMM 
assumes the observation data is in discrete time and 
that there is no missing data in the predictor variables 
[94, 168]. To avoid interpolating large gaps, we seg-
mented the location data into separate bouts when-
ever missing locations spanned more than 6 h (i.e., we 
interpolated a maximum of three missing locations). To 
remove data-sparse bouts, we removed segments span-
ning < 24 h or those with fewer than eight locations (as 
in [155]). Any missing locations in the remaining bouts 
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were interpolated using the R Package crawl [70, 71]. 
The remaining telemetry data used in the subsequent 
analysis are presented in Fig. 5.

Next, we annotated this telemetry data with the fol-
lowing covariates: bear age and cub status from when 
the bears were tagged; ordinal date and hour of the GPS 
fix; sun altitude calculated using the R package oce [72]; 
wind velocity, snow depth, total precipitation, surface 
solar radiation from the ERA5 meteorological reanaly-
sis project [59]; sea ice concentration [27]; bathymetry 
[63]; tidal currents [135]; and sea ice motion vectors by 
the National Snow and Ice Data Center (NSIDC; [156, 
157]). Spatial covariates provided as a gridded raster were 
interpolated in space and time as in Togunov et al. [152, 
153]. Hypotheses being tested and their associated pre-
dictions as well as detailed description of each covariate 
(i.e., source, spatial and temporal resolution, and method 
of interpolation) are presented in Appendix A.

Sea ice motion correction
Between 2005 and 2015, 20 GPS collars originally 
deployed on polar bears had been dropped by the 
bears (or were on bears that died) on the sea ice, col-
lectively yielding 10,409 locations during the months of 
December–July [154]. To correct for sea ice motion in 
the telemetry data, without assuming the environmen-
tal data is free of bias, we first fitted a biased correlated 
random walk (BCRW; all notation used in this paper is 
described in Table  1) model to tracks of these passively 
drifting collars [154]. This BCRW described the motion 
of the dropped collars as a function of either ERA5 wind 
velocities [59] or NSIDC sea ice motion vectors [156, 
157]. The data source (i.e., ERA5 wind or NSIDC sea ice 
motion) that predicted sea ice motion was used for the 
correction. In this instance, the hourly wind data out-
performed the daily NSIDC data (details in Additional 
file  1: Appendix C). Next, we used the BCRW fitted to 

Fig. 2 Hudson Bay study area (enlarged) and polar bear tracks (colored lines). Gaps in telemetry data > 6 h and bouts < 24 h were excluded from 
analysis and are not shown. The green region represents Wapusk National Park



Page 5 of 20Togunov et al. Movement Ecology  2022, 10(1):50 

the dropped collars to predict and subtract the estimated 
component of sea ice motion driven by wind from the 
bear telemetry data (details in Additional file 1: Appen-
dix B). After correcting for wind-advection, the 2-h bear 
collars still retained motion from tidal currents, which 
complete 360◦ counter-clockwise rotations approximately 
every 12  h [135]. This tidal motion could not be cor-
rected using the dropped collars due to their lower 4-h 
resolution [154]. Therefore, the residual tidal current was 
integrated into the motion of the drift state in the behav-
ioral model (details in Sect. 2.3). Although it is challeng-
ing to remove sea ice motion from the movement track, 
we expected reducing its effect would increase the accu-
racy of the HMM—particularly for characterizing states 

with movement speed similar to sea-ice speed. Appen-
dix D compares the results of the ice motion-correction 
method implemented in this paper to no ice motion-
correction, a correction using satellite-derived sea ice 
motion vectors, and a method that integrates (rather 
than subtracting) sea ice motion into all behaviors.

Behavior analysis
Some behaviors exhibit orientation bias relative to the 
external stimuli, which is defined as taxis [26]. The degree 
of bias can occur along a spectrum from being primarily 
governed by bias relative to external stimuli (e.g., biased 
random walk, BRW, advective correlated velocity model, 
CVM), to a trade-off between directional persistence and 
orientation bias (e.g., BCRW), to being primarily gov-
erned by directional persistence (e.g., CRW, unbiased 
CVM; [8, 25, 26, 55]). Bias toward an angle relative to a 
stimulus is defined as menotaxis. The ability to detect and 
quantify movement bias depends on the sampling inter-
val (e.g., measurement of location or acceleration) as well 
as the statistical approach used to model movement [55]. 
For example, low-frequency data may lack information on 
movement bias, and conversely, high-frequency data may 
have a large degree of autocorrelation that may obscure 
information on bias [55, 155]. In addition to sampling fre-
quency, sampling regularity and measurement error can 
impact the efficacy of various statistical approaches in 
describing biological processes [54, 55, 132, 155].

We used an adapted version of the HMM with meno-
tactic behaviors described in Togunov et  al. [155] to 
investigate three movement behaviors: drifting, area-
restricted search (ARS), and olfactory search. We 
described these behaviors using a four-state HMM in 
which the drifting and ARS behaviors were represented 
by their own respective states (D and ARS) and olfac-
tory search was divided into two discrete states corre-
sponding to bias left and bias right relative to wind ( O(L) 
and O(R) , respectively; Fig.  1; [155]). Under this HMM 
framework, the states were assumed to be a discrete-
time latent Markovian process, where the probability 
of a state St at time t ∈ 1, . . . ,T  depends only on the 
state at the previous time St−1 , and the observed data 
Xt depends only on the hidden state St [95, 168]. The 
state transition probabilities γi,j = Pr(St+1 = j|St = i) 
for i, j ∈ {1, . . . ,N } (where N is the number of states) 
are summarized by the N × N  transition probability 
matrix, Ŵ . We extracted two variables from the track-
ing data: step length lt ∈ (0,∞) (the distance between 
consecutive locations) and turning angle φt ∈ (−π ,π ] 
(change in bearing between consecutive steps; [84, 94, 
155]). Following Togunov et al. [155], we assumed step 
lengths followed a Gamma distribution:

Table 1 Description of notation used in this paper and their 
interval, if applicable

Variable Interval Description

T {1, 2, . . .} Total number of time steps

t [1, T] A time step

Xt – Set of observations at time t

X – The set of all observations (X1, . . . , XT )

l (0,∞) Step length between consecutive locations

φ (−π ,π ] Turning angle (i.e., change in bearing) between
consecutive steps

r [0,∞) Magnitude of the stimulus

ψ (−π ,π ] Direction of a stimulus relative to the bearing of 
the
previous time step

µ(l) (0,∞) Mean parameter of step length

σ (l) (0,∞) Standard deviation parameter of step length

β1 (−∞,∞) Intercept coefficient for mean step length

β2 (−∞,∞) Slope coefficient for mean step length and r

µ(φ) (−π ,π ] Mean parameter of turning angle

κ(φ) (0,∞) Concentration parameter of turning angle

α1 (−∞,∞) Bias coefficient in the same direction as the 
stimulus

α2 (−∞,∞) Bias coefficient 90◦ left of the stimulus

ϑ (−π ,π ] The direction of bias relative to stimulus

M∗ [0, 1) Scaled magnitude of attraction

ˆ – An estimated value, e.g., µ̂(l) is the estimated value 
of µ(l)

N {1, 2, . . .} Total number of behavioral states

S [1, N] Behavioral state

S
′ [1, N] Behavioral state with the highest within‑cell pro‑

portion relative to across‑cell proportion

γi,j [0, 1] Transition probability from state i to state j

Ŵ – N × N Transition probability matrix

D – The drift state

O(L)
,O(R) – Olfactory search state with anemotaxis left of wind

and anemotaxis right of wind, respectively

ARS – Area‑restricted search state
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where µ(l)
S,t > 0 and σ (l)

S,t > 0 are the state-specific mean 
and standard deviation, respectively, of the step length at 
time t [94, 155]. The motion of the drift state was defined 
as a function of predicted tidal currents as it could not be 
corrected for using the 4-h dropped collars. Specifically, 
we defined the mean step length following:

where β1,S ∈ (−∞,∞) is the state-specific intercept coef-
ficient for step length mean and β2 ∈ (−∞,∞) is a slope 
coefficient representing how the mean step length of D is 
affected by tidal speed r(tide)

t  . Further, we used pseudo-
design matrices in conjunction with working boundaries 
to ensure that the step length of olfactory search was 
faster than ARS and that ARS was faster than drift (i.e., 
µ

(l)
D,t < µ

(l)
ARS,t < µ

(l)

O(L,R),t
 ; details in Additional file  1: 

Appendix E; [94]).
We assumed the turning angle followed a von Mises 

distribution:

where µ(φ)
S,t ∈ (−π ,π] is the state-specific mean turning 

angle parameter at time t and κ(φ)
S,t > 0 is the state-spe-

cific concentration parameter around µ(φ)
S,t  [94, 155]. We 

assumed the mean turning angle for D was a circular-
circular regression function of tidal currents and that 
the degree of bias toward the direction of tides increased 
with tidal speed (details in Additional file  1: Appendix 
E). The ARS state turning mean angle was fixed at 0 (i.e., 
µ

(φ)
ARS = 0 ). The olfactory search states were modeled as 

menotactic BCRWs with biases toward a unknown angles 
relative to wind. Following Togunov et  al. [155], this 
menotactic BCRWs modeled the mean turning angle as 
a trade-off between bias parallel to wind and bias perpen-
dicular to wind. The mean turning angle of each behavior 
was modeled as follows:

where ψ(wind)
t ∈ (−π ,π ] and ψ(tide)

t ∈ (−π ,π ] represent 
the directions of wind and tides, respectively, at time t 
relative to the track bearing at time t − 1 , α1,S ∈ R rep-
resents the state-specific bias coefficient parallel to ψt , 

(1)lS,t ∼ gamma(µ
(l)
S,t , σ

(l)
S,t ),

(2)µ
(l)
S,t =

{

β1,S + β2r
(tide)
t if S = D

β1,S Otherwise,

(3)φS,t ∼ vMises(µ
(φ)
S,t , κ

(φ)
S,t ),

(4)µ
(φ)
S,t =















atan2(α1,Sr
(tide)
t sinψ

(tide)
t , 1 + α1,Sr

(tide)
t cosψ

(tide)
t ) if S = D,

0 if S = ARS,

atan2(α1,S sinψ
(wind)
t − α2,S cosψ

(wind)
t , 1 + α1,S cosψ

(wind)
t + α2,S sinψ

(wind)
t ) if S = O(R),

atan2(α1,S sinψ
(wind)
t + α2,S cosψ

(wind)
t , 1 + α1,S cosψ

(wind)
t − α2,S sinψ

(wind)
t ) if S = O(L),

and α2,S ∈ (−∞,∞) ∈ R represents the state-specific 
bias coefficient toward 90◦ anti-clockwise of ψt [155]. As 
O(L) and O(R) represented the same underlying behavior, 
they shared the parameters for state transition probabili-
ties γi,j , step length µ(l)

S,t and σ (l)
S,t , turning angle concen-

tration κ(φ)
S,t  , and bias parallel to wind α1,S , and we fixed 

α2,O(R) = α2,O(L) [155]. Following Togunov et al. [155], the 
angle of attraction relative to wind was represented by 
ϑ = atan2(α2,α1) . In addition, we could represent where 
a behavior lies along the spectrum of CRW and BRW 
using the scaled magnitude of attraction M∗

S ∈ [0, 1):

The CRW and BRW are limiting cases of Eq.  5, where 
M∗

→ 0 and M∗
→ 1 , respectively, while a BCRW would 

have an intermediate value of M∗ . That is, a value of M∗ 
close to 0 represents behavior with high directional per-
sistence, and a value close to 1 represents behavior with 
orientation highly correlated to an external stimuli.

To investigate how environmental conditions influ-
ence the probability of different behaviors, we mod-
eled the state transition probabilities as functions of 
the annotated covariates [84, 94]. To allow for non-lin-
earity, ordinal date, sun altitude, wind velocity, surface 
solar radiation, ice concentration were fitted in linear 
and quadratic form, and hour of the day was fitted as a 
cosinor model [94]. To determine which form (i.e., lin-
ear or quadratic, cosinor) to use, we fitted HMMs with 
each form of the covariate on their own (i.e., with no 
other covariates), and selected the form with the lowest 
Akaike information criterion (AIC; [1]). We assessed the 
co-linearity among competing covariates (e.g., sun alti-
tude, surface solar radiation, and hour of the day; and 
ice concentration and ordinal date). For any covariates 
with a correlation > 0.5 , we selected the covariate with 
the lowest AIC in the consequent model selection. Each 
remaining covariate tested unique and non-competing 
hypotheses regarding polar bear behavior, therefore, any 

combination of covariates would yield a valid ecological 
model. Therefore, we used forward and backward AIC 
model selection to determine which combination of 
covariates best explained state transitions [17, 111].

(5)M∗

S =

√

α2
1,S + α2

2,S

1 +

√

α2
1,S + α2

2,S

.
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Over time, state probabilities of a Markov chain con-
verge to the ‘stationary distribution’, which represent the 
marginal probability of a state assuming the covariates 
remain constant [84, 110, 168]. We estimated the 95% 
confidence interval on the stationary distribution as an 
indicator of significant within-state change in relation to 
covariates in state probability or between-state probabil-
ity following McClintock and Michelot [94]. Because we 
were not examining variation between bears, we did not 
include random effect on individual ID, and all estimated 
model coefficients were shared among individuals [93, 
94]. The HMMs were fitted using the R package momen-
tuHMM [94].

To investigate the spatial distribution of states, we first 
determined the most likely state for each step using the 
Viterbi algorithm [168]. Second, we rasterized the state-
decoded steps by assigning them to cells of a regular 
50  km grid. Third, to reduce temporal autocorrelation, 
we rarefied the steps into unique “bear days”, such that 
for each cell, we retained only one data point for unique 
bear ID, date, and state. A simple measure of the most 
frequent state in a cell would bias states that were more 
common overall and fail to identify where uncommon 
states were disproportionately frequent. Therefore, for 
each cell, we identified which state was most frequent 
relative to the frequency of each state across all cells. 
Specifically, for each cell i, we defined the state S′ as the 
state with the highest within-cell proportion relative to 
proportion across all cells following:

where N (S)
i  is the number of bear days in cell i for state 

S, Ni is the total number of bear days in cell i across all 
states, N (S) is the number of bear days across all cells for 
state S, and N is the total number of bear days across all 
cells and states. S′ was calculated for the entire data set, 
as well as separately for early winter (January–March) 
and late winter (April–June) to compare seasons, sepa-
rately for years with low ice concentration and high ice 
concentration to compare years with different conditions, 
and separately for younger (6–14 years) to older (15–20 
years) adult bears to compare age classes. We obtained 
weekly sea-ice coverage in Hudson Bay from January to 
June from Ice Graph version 2.5 [131]. We calculated the 
mean total ice concentration for each year and classified 
each into either years with below or above mean total ice 
concentration. Spatial state segregation was described 
qualitatively.

In addition to spatial state segregation, we com-
pared the spatial extent of telemetry data by season 
and between years with high and low concentration. 

(6)S
′

i = argmax
S=1,2,3,4

(

N
(S)
i /Ni

N (S)/N

)

,

Utilization distribution (UD) was calculated using the 
80% autocorrelated kernel density estimator (aKDE) 
using the R package ctmm [18]; this analysis was only 
descriptive and did not assess statistical significance. All 
analyses were conducted in R version 4.1.1 [120].

Results
We obtained 31550 locations during the focal months 
of January to June from 14 unique bears. Some collars 
provided data across multiple years, yielding 24 unique 
“bear-years”. The movement bouts contained 2484 (7%) 
missing locations that were interpolated using the R 
package crawl. After filtering out short and data-sparse 
bouts from the interpolated segments, we retained 33160 
unique steps. Each year had between 2084 (2019) and 
10092 (2020) locations, and we obtained between 4199 
(February) and 6545 (April) locations across months.

Both forward and backward model selection converged 
to the same top model. In this model, drift was character-
ized as a slow BCRW with a moderate turning bias in the 
same direction as tidal currents. At the median estimated 
tidal speed of 0.29 km h −1 , the mean step length of drift 
was 0.63 ± 0.31 km h −1 ( ̂µ(l)

D , σ̂
(l)
D  ; Table  2, Fig.  3a). The 

turning angle concentration ( ̂κ(φ)
D = 3.64 ; Table  2, 

Fig.  3b) and scaled magnitude of attraction 
( M̂∗

O(L),O(R) = 0.41 ; Table 2) were moderate, best charac-
terizing drift as a BCRW. The direction of tidal currents 
explained much of the variation in direction of drift with 
the majority of drift direction falling within 5.0◦

± 43.8 
SD of the tidal currents (Fig. 3c and f ).

ARS was characterized as a slow CRW with no bias 
relative to wind. The estimated mean step length was 
0.76 ± 0.59 km h −1 ( µ̂(l)

ARS , σ̂
(l)
ARS ; Table  2, Fig.  3a). Mean 

turning angle was fixed to zero and the turning angle con-
centration was the lowest among the states ( ̂κ(φ)

ARS = 0.62 ; 
Table 2, Fig. 3b), best characterizing ARS as a CRW with 
low persistence.

Olfactory search was characterized as a fast BCRW 
with a bias relative to wind. Olfactory search had the 
highest estimated mean step length ( µ̂(l)

O(L),O(R) = 2.04 , 

Table 2 Parameter estimates for four‑state HMM

[†]Mean step length (km h −1)

[‡]Step length standard deviation (km h −1)

[§]Angle of attraction relative to wind (◦)

[¶]Turning angle concentration

[‖]Scaled magnitude of attraction

State µ̂(l)[†] σ̂ (l)[‡] ϑ̂[§] κ̂(φ)[¶] M̂∗[‖]

Drift, D 0.63 0.31 NA 3.64 0.41

Area‑restricted search, ARS 0.76 0.59 NA 0.62 NA

Olfactory search, O(L,R) 2.04 0.93 92 4.28 0.29
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σ̂
(l)

O(L),O(R) = 0.93 km h −1 ; Fig.  3a), with an overall bias 
toward ±92◦ relative to wind (downwind bias of 
α̂1,O(L),O(R) − 0.011 , and crosswind bias of 
α̂2,O(L),O(R) ± 0.303 ; Table  2, Fig.  3d). The turning angle 
concentration was the highest among the states 
( κ(φ)

O(L),O(R) = 4.275 ; Table  2, Fig.  3b). The scaled magni-
tude of attraction relative to wind was moderately low 
( M̂∗

O(L),O(R) = 0.233 Table 2), best characterizing olfactory 
search as a BCRW.

Based on the Viterbi-decoded states, polar bears spent 
approximately 47% of their time in the drift state, 24% in 
ARS, and 29% in olfactory search. All behavioral states 
were most likely to remain within the same state (state 

transitions between 0.52 in ARS to 0.78 in D; Fig.  4). 
O(L,R) was about 1.6 times more likely to transition ARS 
than D, ARS was about 2.9 times more likely to transition 
D than O(L,R) , and D was about 19.6 times more likely to 
transition ARS than O(L,R) (Fig. 4).

Six covariates on the state transition probability were 
identified in the top model: hour, day, ice concentration, 
distance to shore, wind speed, and bear age. The highest 
variability in state probability was with respect to hour of 
the day. The drift state was most frequent between 00:00 
and 15:30 h (local time, UTC -5 H) with a peak around 
08:30  h. Olfactory search was most frequent between 
15:30 and 00:00 with a peak around 20:00  h. However, 
this evening peak activity appeared to be primarily driven 

Fig. 3 Predicted state characteristics. a Step length distribution for each state; b turning angle distribution for each state; polar bear orientation 
relative to c tidal currents and d wind; and example from one bear bout contrasting the e original track and f wind‑forcing‑corrected track. D and 
ARS represent drift and area‑restricted search, respectively, and O represent olfactory search (left, O(L) , or right, O(R) , relative to wind). Tracks in e and f 
are colored by the decoded states and show the estimated wind (gray) and tidal current (blue) velocities. All data (except in panel e) were based on 
the wind‑forcing‑corrected tracks and the top model fitted to seven years of polar bear telemetry data from Western Hudson Bay, Canada
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by movement in January–May, while bears did not appear 
to exhibit significant diurnal variation in June (Additional 
file 1: Fig. D1). ARS exhibited little variation compared to 
drift and olfactory search, though it appeared to decrease 
from a peak at 03:00  h to a trough at 20:00  h (Fig.  5a). 
With respect to ordinal date, drift and ARS decreased 
as the season progressed, while olfactory search 
increased (Fig.  5b). With respect to ice concentration, 

the confidence intervals decreased with increasing ice 
concentration, likely due to the larger amount of data at 
higher concentrations. ARS and olfactory search margin-
ally decreased with increasing concentration, while drift 
increased with ice concentration. At ice concentrations 
< 50% , drift and ARS had similar probabilities (Fig. 5c). 
The probability of ARS gradually increased as distance 
to shore increased. The probability of being in a drift 
state increased up to ∼ 130 km from shore, then gradu-
ally declined. The probability of olfactory search declined 
rapidly until a distance of ∼ 150 km from shore, then 
remained relatively consistent. Near shore, the probabil-
ities of drift and olfactory search were similar, and at a 
maximum distance of ∼ 390 km, the probabilities of drift 
and ARS were similar (Fig. 5d). As wind speed increased, 
the probability of drift decreased, ARS increased, while 
olfactory search remained relatively consistent. At the 
highest observed wind speeds ∼ 20 m s −1 , the prob-
abilities of drift and ARS were similar (Fig.  5e). As age 
increased, the probability of ARS increased, olfactory 
search decreased, while drift remained relatively consist-
ent (Fig. 5f ).

There was a non-uniform distribution of location 
data across the Bay, with the highest concentration of 
locations occurring around −90.5◦ longitude and 58.5◦ 
latitude (Fig. 6a). There appeared to be marginal segre-
gation of states, with drift appearing to be more com-
mon west of −89◦ longitude, ARS was more common 
east of −89◦ longitude, and olfactory search was more 

Fig. 4 Markov chain depicting state transition probabilities. 
Arrow thickness and transparency represents weight of transition 
probability (numeric value) assuming mean values for all covariates. D 
and ARS represent drift and area‑restricted search, respectively, and O 
represent olfactory search (left, O(L) , or right, O(R) , relative to wind)

Fig. 5 Stationary state probabilities as functions of a hour, b day, c ice concentration, d distance to shore, e wind speed, and f bear age. Shaded 
areas represent the 95% confidence interval. D, ARS, and O represent drift, area‑restricted search, and olfactory search, respectively
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common around the periphery of the overall extent 
(Fig. 6b). The spatial segregation between drift and ARS 
was apparent in late season, when mean annual ice con-
centration was high, and among older bears (Fig. 7). The 
UD was ≈ 31 % greater during early winter (January–
March; 80% UD = 316,550 km2 ) compared to late win-
ter (April–June; 80% UD = 242,100 km2 ; Fig. 7a and b). 
The 80% UD in years with below average ice concentra-
tion (2011, 2016, 2017, and 2021; µ±SE= 89.03 ± 0.28 ) 
was ≈ 15 % greater (low: 277,753  km2 , high: 
267,418 km2 ) compared to years above average ice con-
centration (2018, 2019, and 2020; µ±SE= 91.95 ± 0.31 ; 
Fig. 7c and d). The 80% UD of younger individuals was 
≈ 5 % smaller compared to older individuals (younger: 
312,822 km2 , older: 330,313 km2 ; Fig. 7e and f ).

Discussion
Polar bears exhibit a high degree of behavioral plas-
ticity and diversity [104, 138, 151, 161], however the 
remote and dynamic nature of their habitat has made it 
difficult to study their behavior, particularly during the 
critical winter foraging period. We used remote track-
ing data to investigate the spatiotemporal distribution of 
three movement states representative of three important 
behaviors (stationary/drifting, area-restricted search, and 
olfactory search) and to examine what factors may pro-
mote them. We identified six factors that appear to affect 
state probability and the spatial variation in state distri-
bution and segregation. Most notably, we observed diur-
nal and intra-annual variation that may be indicative of 
a circadian rhythm and seasonal shifts in foraging strat-
egy corresponding to known changes in prey availability. 
In addition, we observed variation in the spatial extent 

of movement that may be related to variation in habitat 
quality or intraspecific competitive exclusion.

One of the key challenges when applying HMMs to 
identify behavior from movement data is the biological 
interpretation of states [95, 117]. We classified move-
ment into three states, each of which may represent more 
than one behavior. For example, the drift state may repre-
sent any stationary behavior, including sheltering during 
adverse weather, resting, still-hunting, or prey handling. 
To facilitate the interpretation of the results, we used 
prior knowledge on the behavior and phenology of polar 
bears and their prey. In addition, we interpreted states 
through the lens of classic optimal foraging theory and 
the marginal value theorem, which provide predictions 
on relationships between residency times and energy 
expenditure in relation to resource availability and habi-
tat quality [21, 44, 119].

State probability
Nearly half of polar bears’ overall time budget was occu-
pied by the sedentary drift behavior, which was also the 
most frequent state. These results align with previous 
work revealing that polar bears spend the majority of 
their time in stationary behaviors [104, 138]. All behav-
iors were most likely to remain in the same state. After 
remaining within the same state, olfactory search was 
most likely to transition to ARS, ARS was most likely to 
transition to drift, and drift was most likely to transition 
to ARS. The sequence from olfactory search to ARS, then 
drift, aligns with the prediction that following success-
ful olfactory search, bears should transition to a scent-
localization strategy. If the target is an active breathing 
hole, bears would transition to still-hunting [106, 138], 

Fig. 6 Distribution of predicted states. a total number of bear days and b state S′ with the highest within‑cell proportion relative across‑cell 
proportion. Cells with < 7 bear days were not plotted and cells with < 21 bear days were hashed
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Fig. 7 Maps of state S′ with the highest within‑cell proportion relative to across‑cell proportion. Data were subset into a early winter (January–
March) or b late winter (April–June); c years with low ice concentration (2011, 2016, 2017, and 2021) or d years with high ice concentration (2018, 
2019, and 2020); and e youngest seven bears (6–14 years) or f oldest seven bears (15–20 years). Maps were based on Viterbi‑decoded states and 
rarefied to bear days. Cells with < 7 bear days were not plotted and cells with < 21 bear days are hashed. The number of unique bears and number 
of locations are presented on the bottom left. The green region represents Wapusk National Park. Contour line represents the 80% utilization 
distribution
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and if the target is a hauled out seal, bears may attempt 
to stalk and ambush the seal [133, 138]. If a bear success-
fully captures a seal, it would spend a several hours han-
dling and feeding on the prey then rest for several more 
hours [133, 149]. Due to the high energetic cost of preda-
tion attempts, bears may also rest following unsuccessful 
hunts [15, 61]. Therefore, the transitions from ARS to sta-
tionary/drift states also aligned with our predictions. We 
did not have any a priori predictions on the most likely 
transition from drift, however the marked higher prob-
ability of transitioning to ARS compared to olfactory 
search was notable. Assuming seals exhibit a patchy dis-
tribution, once bears identify a productive patch through 
olfactory search, they may remain in more localized 
behaviors (i.e., drift and ARS) as they switch between 
localized search, hunting, feeding, and resting [133, 149].

For the first 15 h of the day, drift was the most preva-
lent state with a peak around 08:30  h. Similarly, Ware 
et al. [161] detected minimal activity before 08:00 h dur-
ing January–March for the Southern Beaufort Sea polar 
bear population. Moreover, Stirling [138] identified the 
first 8 h of the day as the most advantageous period for 
still-hunting seals, the favored hunting strategy of polar 
bears during the non-pupping season. Seal haul-out var-
ies diurnally and seasonally. During early winter, seals 
haul-out primarily at night, while during spring, haul-
out behavior peaks around 12:30 h. [7, 46, 73, 138, 158, 
159]. Therefore, under the hypothesis that polar bears 
still-hunt more when seals spend more time in the water, 
bears should still-hunt during the day during winter, and 
during spring, bears should still-hunt during the night. 
However, opposite to this hypothesis Ware et  al. [161] 
found a peak in polar bear activity from 12:00 to 14:00 h 
during early winter, when seals haul-out at night, and a 
peak in bear activity at 24:00 h during the pupping season 
(i.e., April and May), when seals haul-out primarily dur-
ing the day. The peak in activity we observed in January–
March was 8  h later than Ware et  al. [161], however in 
line with Ware et al. [161] we observed a night-time peak 
in activity in March–May followed by a highly variable 
timing of activity in June (Additional file 1: Fig. D1). The 
discrepancies in sleep and activity among studies may be 
due to population variability, interactions with season, or 
methodological differences (e.g., inability to differentiate 
between sleep and still-hunting).

As winter progressed, we observed a decrease in the 
low energy states (i.e., drift and ARS) and an increase in 
the higher energy state (i.e., olfactory search). The shift 
from low energy behaviors to high energy behaviors 
coincides with seals accessibility and may reflect corre-
sponding changes in ideal hunting strategy from ambush 
predation to stalking predation [97, 158, 161]. Polar bears 

exhibit various hunting strategies with corresponding 
variation in movement and activity [161]. During the first 
half of winter, seals spend the majority of their time in the 
water and rarely haul-out to the surface [73, 159]. Thus, 
access to ringed seals is primarily limited to breathing 
holes using still-hunting [138]. In April–May, ringed seals 
give birth and nurse their pups in subnivean lairs as the 
pups lack the thermal insulation to withstand the cold 
temperatures of Arctic waters and environment [134]. 
The subnivean lairs are visually inconspicuous, and polar 
bears rely on their sense of smell to locate them [142, 
152]. Following the pupping season, from late May until 
the sea-ice melts, seals spend the majority of their time 
basking on the sea-ice surface to molt [7, 53, 73, 159]. 
In addition, as the sea ice begins to thaw from mid-May, 
ringed seals no longer need to rely on breathing holes to 
surface, reducing the effectiveness of still-hunting [97, 
143]. Access to seals is greatest during the pupping and 
molting season, which corresponds to the peak polar 
bear foraging period when bears enter hyperphagia [97, 
113, 125, 140].

The increase in olfactory search during a period of 
increased prey availability aligns with the predictions 
of the marginal value theorem. The theorem states that 
a predator should exploit a patch until the energy intake 
rate drops to the average of the entire habitat, which 
would occur earlier during periods and regions with 
greater resource availability [21]. It is noteworthy that the 
marginal value theorem does not necessarily predict the 
specific mechanism that governs residency, but rather 
the departure time from a patch [21]. Residency time is 
an emergent property of discrete behaviors and finer-
scale space use. For example, higher residency time can 
be produced by slower manifestation of some behavior 
(e.g., slower travel), longer time spent in slower behav-
iors (e.g., sleeping or nursing), or engaging in slow behav-
iors associated with patch use (e.g., ARS or feeding). We 
argue that a behavioral switch from still-hunting to active 
hunting is the behavioral mechanism that would lead to 
resource-linked residency time. A behavioral switch can 
also be viewed in terms of optimal foraging theory. For 
example, during periods of greater resource availabil-
ity, animals can afford to engage in more energy-costly 
behaviors to maximize energy intake, and during periods 
of reduced resource availability, animals should switch 
to energy-conserving behaviors [119]. For example, dur-
ing the summer fasting period when polar bears remain 
onshore, they exhibit the lowest annual activity in order 
to minimize energy expenditure (i.e., when compared 
to the winter foraging period; [10, 107, 109, 152, 162]). 
In contrast, bears with access to subsistence-harvested 
whales during the summer exhibit higher activity [160].
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Most other polar bear populations exhibit a simi-
lar increase in activity coinciding with the seal pupping 
period [3, 10, 97, 133, 140, 161]. However, some con-
trasting patterns have been documented in the literature, 
which may be due to geographic or methodological dif-
ferences. In areas of land-fast ice, polar bears increase 
frequency of still-hunting from spring to summer as 
warmer temperatures expose snow-covered breathing 
holes and promote still-hunting [142]. In areas of pack 
ice, warm temperatures promote the formation of open 
leads and impede still-hunting [143]. Indeed, polar bear 
movement rates are higher over active ice than over con-
solidated ice [10, 41]. Parks et  al. [109] showed higher 
movement rates in winter compared to break-up in Hud-
son Bay, however they did not correct for sea ice motion, 
which is faster in winter [166] and can artificially inflate 
movement rates [3, 5].

The decrease in stationary behavior we observed in 
spring also coincides with the peak in polar bear breed-
ing activity in March–May [41, 148, 161]. Polar bear 
breeding pairs are associated with reduced time walk-
ing and hunting compared to non-breeding pairs result-
ing in a corresponding range contraction [148], which we 
expect to manifest as an increase in ARS-like movement. 
Assuming a typical weaning period between March and 
June of 2.25-−2.5 year old cubs [122, 142], four (one con-
firmed) of our 14 bears would have been alone and pos-
sibly breeding. We expect these bears to have inflated 
the frequency of ARS in spring, suggesting the observed 
increase in olfactory search may be conservative among 
non-breeding individuals. In addition, due to faster wind 
speeds in early winter, sea ice motion in Hudson Bay is 
higher earlier in the season [74, 86, 166], which may 
inflate movement rates, increase misclassification of drift 
as ARS or olfactory search, and further underestimate 
the seasonal decline in drift.

We hypothesized two effects of ice concentration on 
polar bear foraging. First, lower ice concentrations are 
more energetically costly to move through, wherein bears 
may have to travel longer distances to avoid swimming 
[9, 128], which use significantly more energy than walk-
ing [33, 52]. Second, ice concentration may influence the 
distribution and accessibility of seals. As described ear-
lier, high ice concentrations may be more amenable to 
still-hunting as seal access to surface is more constrained 
and predictable, while at low ice concentrations, seal 
access to open water is greater and may promote active 
search and stalking hunt among polar bears [97, 143]. We 
observed an increase in the drift state as ice concentra-
tion increased in support of both the aforementioned 
hypotheses. Increased drift state in high ice concentra-
tion area is also in line with previous work showing that 
polar bears select for areas of high ice concentration, 

where they exhibit greater residency times, and lower 
movement rate in most studied populations [11, 32, 41, 
79, 85, 114]. Some studies identified an unexplained 
increase in activity with ice concentration [10, 160], con-
trasting results that may be due to limited location data 
in low ice concentration in our research, different periods 
examined, or geographic variation.

There are open leads that encircle Hudson Bay and 
areas closer to shore tend to be more biologically produc-
tive [58, 141], resulting in ringed seals being more likely 
to remain in a resident behavior in shallower areas close 
to shore [88]. The open lead is also the primary habitat 
for harbor seals (Phoca vitulina; [6]). Polar bear habitat 
selection with respect to distance from shore appears to 
depend on scale. At large scales (e.g., > 150 km), polar 
bears throughout the Arctic appear to select areas closer 
to shore [32, 68, 79, 92]. However, at a finer scale (e.g., 
< 150 km), polar bears appear to select for habitat fur-
ther from shore, as the land-fast ice near shore may be 
less productive and preferentially used by subordinate 
individuals [68, 114]. In line with previous research, we 
observed a peak in the probability of being in the station-
ary drift state around 80 km, with olfactory search being 
more common closer to shore, and ARS increasing with 
distances > 80 km from shore. Thus, we suggest that 
there may be an optimal distance to shore rather than 
a simple monotonic increase or decrease as suggested 
by previous research. The selected distance to shore is 
likely specific to population, season, and demographic 
group. For example, in areas with a narrow continen-
tal shelf, such as the Beaufort and Greenland seas, bears 
may remain closer to shore [32, 68, 79] compared to areas 
with a broad continental shelf (e.g., Hudson Bay and 
Laptev and Kara Seas; [32, 91, 92]). In areas with seasonal 
ice, bears may select areas close to shore to maintain 
proximity to summering grounds, which is supported by 
an increasing selection close to shore in break-up com-
pared to winter [92]. Competitive exclusion may also 
force subordinate individuals (e.g., females with cubs of 
the year) into lower quality habitat [68, 91, 114].

We predicted olfactory search would be most com-
mon at moderate wind speeds since still air and fast 
winds can impede olfaction [2, 51, 152], and fast or cold 
winds may encourage polar bears to shelter in place [57] 
and deter seals from hauling out [20, 46, 53]. However, 
as wind speed increased, we observed a decrease in 
drift and increase in ARS. This unexpected relationship 
between drift and ARS with respect to wind was likely 
an artifact of our ice motion correction model, which 
was trained on lower resolution dropped collars. Due to 
temporal averaging, the model may underestimate sea ice 
motion caused by wind, causing stationary behavior to be 
misclassified as ARS at high winds. There is a need for 
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movement models that simultaneously predict and cor-
rect for sea ice motion and carry error in drift estimation 
forward into state classification.

State distribution
We observed variation in distribution associated with 
season, mean ice concentration, and bear age. Data 
from early winter were further from the summer refugia 
and had a larger range than data from late winter. Stud-
ies have found selection for areas closer to shore was 
stronger in late winter compared to early winter [81, 92, 
109]. In contrast to our findings, Durner et al. [35] iden-
tified a range expansion from winter into break-up in 
the Beaufort Sea that appeared to reflect a regime shift 
from stable multi-year sea ice to seasonal ice resulting in 
some of bears migrating south in the summer and some 
to range north following the retreating sea ice [108, 115].

The bear utilization distribution was greater in years 
with low ice concentration, which may be a response to 
habitat fragmentation that encourages bears to range 
further in search of quality habitat. Only 28% of the data 
points occurred in years with low ice concentration, sug-
gesting that the observed area of the UD may be a con-
servative estimate. A similar negative relationship with 
sea ice concentration and home range size was found in 
several studies for the Southern Beaufort Sea population 
[3, 35, 40, 56, 108]. However, other work showed home 
range to increase with an extended ice season and greater 
extent [81, 109]. One possible explanation for the differ-
ences among studies may be that some populations expe-
rience habitat fragmentation (including Western Hudson 
Bay) while others experience habitat loss [12, 39]; habitat 
fragmentation may increase ranging in search of quality 
patches (e.g., [49, 89, 108]), while habitat loss may lead to 
declines in extent as parts of the historic range become 
unavailable (e.g., [60, 137]). If this hypothesis is correct, 
we predict that early stages of sea-ice decline (seasonal or 
interannual) may promote home range expansion, while 
latter stages of decline may cause home range decline. 
It may also be possible for a population to experience 
both habitat loss and fragmentation simultaneously or 
depending on season (e.g., increased fragmentation in 
winter, but habitat loss in spring). Since the effects of 
habitat fragmentation or loss on home range size are 
opposite, the change in home range likely depends on the 
magnitude of loss and fragmentation.

Lastly, we observed that the utilization distribution of 
younger bears (6–14 years) extended further from the 
summer refugia than older bears (15–20 years). One pos-
sible explanation is intraspecific competition, wherein 
older, dominant individuals may force subordinates into 
less optimal habitat through competitive exclusion or 
kleptoparasitism, a pattern observed between dominant 

males and solitary females relative to subordinate sub-
adults and females with cubs in other polar bear popu-
lations [45, 68, 78, 91, 114, 138, 149]. In the Baffin Bay 
and East Greenland populations, the coarse-scale (4-day) 
movement of male polar bears is more tortuous and 
localized than females, likely to remain in high quality 
habitat and decrease encounter rates with other males 
while maintaining similar encounter rates with females, 
whose movement is more consistent with prey locali-
zation [78]. Alternatively, older females with cubs may 
be more experienced in avoiding males than younger 
mothers, and therefore able to remain in higher quality 
habitat, while inexperienced mothers may move further 
for additional safety from kleptoparasitism [91]. How-
ever, little is known about the fine-scale movement and 
space use of male bears as they cannot be collared. An 
alternative explanation is age-specific navigational effec-
tiveness, wherein younger bears have poorer navigation 
abilities on the dynamic drifting sea ice and move further 
from the summer refugia. Similarly, migrating passerines 
exhibit a “coastal effect” where younger, inexperienced 
passerines stray further from the optimal migration fly-
way compared to adults [121]. The lower navigation abili-
ties hypothesis is supported in our observed behavior 
probability, which revealed that older individuals spent 
more time in low energy states. The marginal value theo-
rem predicts that residency time should increase with 
patch quality, suggesting that older individuals may be 
more effective at locating higher quality patches [21].

Our sample size ( n = 14 ) was low and exclusively 
females, therefore, our results likely do not reflect the 
diversity of behavioral strategies among polar bears (e.g., 
[91, 114]). We incorporated orientation bias relative to 
wind to help differentiate behaviors with similar move-
ment characteristics. This approach is limited when the 
external factor is spatiotemporally autocorrelated, as only 
the first few steps in a taxic behavior may display orienta-
tion bias, and once the desired angle is obtained, move-
ment appears autocorrelated [8, 26, 155]. Behaviors of 
similar, or shorter, duration than the telemetry data or 
behavior transitions that occur between location data 
may lead to misclassification. In addition, low resolu-
tion environmental data could hinder the classification of 
states with emission probabilities dependent on environ-
mental covariates. For example, even with high resolution 
telemetry data, we may misclassify up-wind olfactory 
scent localization if the wind data was of insufficient 
resolution. Future work should aim to validate state clas-
sification. For example, Pagano et  al. [104] utilized GPS 
collars equipped with video cameras to validate accel-
erometer-derived behavioral states. In addition to state 
interpretation, it is not self-evident which behaviors are 
the most ecologically important. For example, olfactory 
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search may represent optimal search strategy when con-
ditions are favorable or a longer search for higher qual-
ity habitat [64]. However, the diurnal presence of all three 
states throughout winter suggest that all three play an 
important ecological role. Investigating behaviors across 
seasons with resource variability may provide additional 
contrast to identify behavioral signatures associated with 
quality habitat [23, 107, 152, 160, 162]. In addition, future 
research should consider interactions between covari-
ates; for example, previous research revealed seasonally 
varying diurnal movement and activity patterns, which 
may be better modeled with an interaction [109, 159, 
161]. Last, as analytical techniques continue to advance, 
programming at least some transmitters to a higher loca-
tion frequency (e.g., 1 h or 30 min) would enable research 
of finer-scale behaviors. Identifying baselines for behav-
ioral time budgets may be increasingly important as envi-
ronmental conditions continue to change.

Conclusion
Different behaviors have unique fitness and ecological 
consequences. Quantifying behavioral time-budgets 
and factors that promote different behaviors is key 
to understanding a species’ ecology. Remote tracking 
has elucidated much about polar bear habitat use [77], 
however behavioral research has typically been lim-
ited to two states or less (e.g., [104, 107], but see [4, 
161]). Using advanced models that integrate wind data 
[155], our study described previously undocumented 
circadian patterns in Western Hudson Bay polar bears, 
as well as behavioral variation with respect to season 
and ice concentration that appear to reflect a shift in 
foraging strategy in response to a change in prey avail-
ability (i.e., increase in haul-out behavior from early 
winter to the spring pupping and molting seasons). 
Last, we identified spatial patterns of distribution with 
respect to season, ice concentration, and bear age that 
may be indicative of habitat quality and competitive 
exclusion. Our findings expand on phenologic varia-
tion among polar bear populations that may be asso-
ciated with regional or temporal variation in resource 
abundance or distribution. Due to the high degree of 
variation in ice dynamics throughout the Arctic, it is 
difficult to draw conclusions across populations [3, 
74, 78]. Given the circumpolar distribution of polar 
bears, each population is experiencing a different level 
of climate change related effects, stressing the need 
for population-specific research. The focal population 
of this paper—the Western Hudson Bay—is near the 
southern limits of the species’ range and is among the 
most affected by climate change. Our findings stress 
the importance of accounting for both behavior and 
the temporal and environmental factors that affect 

behavior. Failing to account for temporal factors that 
affect space use may obscure important habitat asso-
ciations. For example, as polar bear behavior changes 
seasonally, resource selection functions that do not 
account for season may miss important patterns of 
habitat selection. Therefore, our methodology can help 
identify periods, locations, and environmental condi-
tions that are associated with habitat quality to can 
help to better understand polar bear behavioral ecol-
ogy and aid conservation.
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