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Abstract 

Background: The home range of an animal is determined by its ecological requirements, and these may vary 
depending on many intrinsic and extrinsic factors, which are ultimately driven by food resources. Investigating the 
effects of these factors, and specifically how individuals use food resources within their home ranges is essential to 
understand the ecology and dynamics of animal populations, and to establish conservation measures in the case of 
endangered species. Here, we investigate these questions in the Canarian houbara bustard, an endangered subspe‑
cies of African houbara endemic to the Canary Islands.

Methods: We analysed GPS locations of 43 houbaras in 2018–2021, using solar GSM/GPRS loggers provided with 
accelerometers. We assessed (1) the variation in their home range and core area with kernel density estimators in rela‑
tion to several intrinsic and extrinsic factors and (2) their foraging habitat selection.

Results: Home ranges were smallest during the breeding season (November–April), when rains triggered a rapid 
growth of herbaceous vegetation. Displaying males and nesting females had smaller home ranges than individuals 
not involved in reproduction. Both sexes used almost exclusively non‑cultivated land, selecting low density Launaea 
arborescens shrublands, pastures and green fallows as foraging habitats. Heavier males used smaller home ranges 
because they spent more time displaying at a fixed display site, while heavier females moved over larger areas during 
the mating period, probably visiting more candidate mates. During the non‑breeding season (May–October), both 
sexes showed larger home ranges, shifting to high density shrubland, but also partly to cultivated land. They selected 
sweet potato fields, green fallows, alfalfas, orchards and irrigated fields, which offered highly valuable food resources 
during the driest months of the year.

Conclusions: Our study shows how Canarian houbara, originally a desert‑dwelling species that uses mostly shrub‑
lands and pastures, has developed the necessary adaptations to benefit from resources provided by current low 
intensity farming practices in the study area. Maintaining appropriate habitat conditions in the eastern Canary islands 
should constitute a key conservation measure to prevent the extinction of this endangered houbara subspecies.
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Background
The home ranges represents the space required by an 
animal to obtain resources necessary for survival and 
reproduction, and so defines the ecological requirements 
of a species [1–3]. Variation in home range is caused by 
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several factors intrinsic and extrinsic to each population 
or species, such as density of individuals [4], habitat type 
and structure [5], body size [6], phase of the breeding 
cycle [7–9], and quantity and quality of food resources 
[10–12]. In a review of the functional relationships 
underlying the ecology of home range in birds, Rolando 
[13] found that food availability was the most impor-
tant of eleven factors identified as relevant from the lit-
erature, and concluded that habitat selection was the 
most influential among four main processes determining 
home range size (i.e. habitat selection, breeding, mat-
ing, and flocking). Rolando’s [13] review highlights the 
importance of investigating which factors influence home 
range size, and also whether these same factors directly 
or indirectly affect foraging habitat selection patterns. 
These relationships between home range and foraging 
habitat selection are crucial to understand the ecology 
of animal species, and ultimately also their population 
structure and dynamics [14]. In order to establish habi-
tat selection patterns that help us to better understand 
home range variation, it is necessary to know where 
individuals feed and what resources they use by study-
ing fine-scale foraging locations, something that is only 
possible when behavioural data are available [15–19]. In 
a review about methods and most important questions 
in home range research, Fieberg [20] claimed that home 
range studies using behavioural data are very scarce, and 
recommended that more research should be done on 
this topic. In recent times, modern advances in tracking 
technologies have been increasingly used to study animal 
movement at high spatial and temporal resolution, help-
ing us to understand the spatial ecology and habitat use 
of organisms [21–25]. However, few home range studies 
have benefited from these developments to relate forag-
ing behaviour with habitat selection and home range use 
(see e.g., Zurell et al. [19]).

Finally, an aspect that may be decisive in determining 
home range and foraging habitat selection patterns in 
birds is whether the habitat is modified by agriculture. 
Over one third of all bird species use agricultural areas 
to some extent, particularly during the non-breeding sea-
son, and seeds, cultivated plants or weeds and animals 
associated to crops may represent a very relevant fraction 
of food resources for some species [26, 27]. It is therefore 
of high interest to determine to what extent the use of 
agricultural resources can influence the size of the home 
range and the selection of foraging habitat, particularly 
considering that croplands represent a large percentage 
of global land cover and are continuing to expand rapidly 
[28].

In this study, we used GSM/GPRS data loggers pro-
vided with GPS and accelerometers to investigate these 
relationships in Canarian houbara bustards (Chlamydotis 

undulata fuertaventurae), an endangered subspecies 
of African houbara endemic to the Canary Islands. This 
tracking technology allowed us to record very detailed 
data on individual home ranges, use of space, and for-
aging habitat selection. Previous studies had provided 
some data on home range and movements of houbara 
(C. u. undulata) and MacQueen’s bustards (C. macque-
nii) [29–37], but research on the endemic subspecies of 
the Canary Islands has only started very recently (Abril-
Colón et  al. [38]). This subspecies is restricted to the 
three easternmost islands of the Canarian archipelago: 
Lanzarote, Fuerteventura and La Graciosa. The popula-
tion of Lanzarote, estimated at 440–452 individuals [39], 
represents the main stronghold, with about 80% of the 
total population [40–42]. This subspecies is classified 
as globally Vulnerable according to IUCN criteria [43], 
and a detailed knowledge of home range and foraging 
resources will help to understand how human pressures 
may affect its survival in an environment shared with 
millions of tourists visiting these small islands every year.

Our first objective was to analyze home range changes 
over the annual cycle in Canarian houbaras, in relation 
to the eight following intrinsic and extrinsic factors: (1) 
Sex. Home range may be expected to vary between sexes, 
given the sexual size dimorphism and sexual segrega-
tion in this species, the sexual differences in reproduc-
tive behaviour (territorial defense in males, chick rearing 
only by females), and different phenologies of territory 
occupation and migration [38]. (2) Season. Studies on 
home range seasonal variation are still scarce and have 
provided contradictory results, with some showing larger 
home ranges during the breeding season [44, 45] and 
others the opposite [46, 47]. In our case, we expected 
smaller home ranges during the breeding season in both 
sexes. (3) Reproductive status. Previous studies highlight 
its important effect on home range [48–50]. In the nomi-
nate subspecies of African houbara, females apparently 
visit various males to choose a mate and therefore need 
to move over a large area [32]. Thus, we expected females 
to have large home ranges during the mating phase, and 
small home ranges during the nesting period. In males, 
we expected displaying individuals to have smaller home 
ranges than non-displaying individuals. (4) Body weight 
and condition. Both have been found to influence home 
range in interspecific comparisons [2, 51, 52], and also 
within species [53]. In species where males defend ter-
ritories, the physical condition is often related to terri-
tory size and quality [54, 55], with fitter males occupying 
better and often larger territories [56]. Thus, we hypoth-
esized that houbaras with better body condition should 
have larger home ranges. (5) Body size. In many species, 
adult birds have longer wings than first-year or imma-
ture individuals [57–62]. In houbara bustards, as far 
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as we know there are no data confirming a wing length 
increase with age, either in wild or in captive birds (Y. 
Hingrat, pers. com.), but first-year birds are known to 
usually retain outer primary feathers over the first year, 
and sometimes even up to an age of 24 months, and outer 
primaries are shorter and narrower in juvenile birds than 
in adults [63]. Therefore, it seems reasonable to assume 
that individuals with shortest wings in our sample were 
probably first- or second-year birds, and to expect that 
they should have larger home ranges during their juve-
nile-immature dispersal phase than adults.

Regarding extrinsic factors, we tested the follow-
ing predicted relationships: (6) Density of individuals. 
In both sexes, we expected home range to be inversely 
related to population density due to density-dependence 
and competition with neighbours (e.g., [4, 53, 64, 65]. (7) 
Precipitation. Rainfall is strongly related with plant pro-
ductivity. In arid environments, annual plants resume 
rapid growth after rainfall events [66] and plant produc-
tivity and diversity decrease after long-term reductions in 
water availability [67]. Therefore, we predicted that home 
range during dry months should be substantially larger 
than in rainy months. (8) Habitat quality. Many species 
have been found to use smaller home ranges in more pro-
ductive areas [12, 68–70], or in areas with higher food 
availability [71–74], so we predicted that home range 
would be inversely related to plant productivity.

Our second objective was to investigate the use hou-
baras make of available food resources. Like in home 
range, we expected that habitat use should also differ 
between sexes, reproductive status and seasons, particu-
larly in a semi-desert environment where resources are 
scarce and may represent an important limiting factor. 
Finally, in the case of endangered species, as in our study, 
exploring these effects of environmental and behavioural 
factors simultaneously on home range and resource use 
helps to establish clear space use patterns that may serve 
as a basis for meaningful conservation and management 
plans [23, 75, 76].

Methods
Study area and species
The study was carried out in Lanzarote (Canary Islands, 
29°02’, 13°37’W; 986  km2). The Canary archipelago is 
located in the Atlantic Ocean, 140 km west of the north-
western coast of Africa. The climate is subtropical-desert, 
tempered by the cold Canary Current and the permanent 
northeasterly “Trade” winds. The rainfall is concentrated 
in December-February, with an average 110 mm per year. 
Summers are dry, with less than 1  mm precipitation in 
June–August. The island has a volcanic origin, and the 
vegetation is characterized by xerophytic shrubs, modi-
fied in some areas by goat grazing and farming activities. 

The mosaic of uncultivated and cultivated land in the 
centre of the island, with a combination of shrublands, 
fallows and sweet potato fields, most of them irrigated, 
facilitates weed growth and attracts houbara bustards in 
summer [38].

African houbara bustards are polygynous [77–79], and 
exhibit an exploded lek mating system [80]. They show 
a moderate male-biased sexual size dimorphism [81], 
own unpublished data for the Canarian subspecies). The 
endemic subspecies C.u. fuertaventurae is a nocturnal 
and partial migrant. Over one third of the individuals 
abandon their breeding areas and migrate to non-breed-
ing areas with a mosaic of shrubland and cropland where 
they spend the hottest and driest months of the year [38]. 
Between late autumn and early spring, males of both, 
the nominate C. u. undulata and the insular subspecies 
concentrate at their lek areas where males display at spe-
cific locations of their territories, to which they generally 
remain faithful over the whole breeding period and also 
between years [38]. Females visit displaying males for 
mating and take over all breeding duties [82]. Success-
fully breeding females normally raise one, less frequently 
two or three chicks that remain dependent of her for sev-
eral months. Females with dependent chicks abandon 
their breeding area later than unsuccessful females [38].

Monitoring marked birds
Between 2017 and 2019, 43 houbaras (22 males and 21 
females) were captured using nylon snares at display 
(males) or feeding sites (females). All birds were equipped 
with backpack-mounted, solar GSM/GPRS loggers (48 g 
model for males, 25  g model for females; e-obs GmbH, 
Gruenwald, Germany), using a soft, elastic band as har-
ness material. The weight of transmitter plus harness 
was on average 2.83% of the body weight in males (range 
2.54–3.15) and 2.15% in females (range 1.81–2.53). Males 
were captured at their display sites, which were selected 
randomly over the whole island, and females at foraging 
areas during the non-breeding season, in order not to 
jeopardize their nesting process. The capture team con-
sisted of four people, who remained at 300–500 m from 
the capture site to be ready for access as soon as birds 
got entangled in the snares. Captured birds were immo-
bilized, and their heads covered during the marking pro-
cess to minimize capture stress. The average processing 
time of an individual from capture to release was 14 min 
(range 5–25). We did not observe behavioural alterations 
of the birds as a result of marking. Sex was established 
in the field using distinctive plumage features of females 
and males [83, 84], and confirmed by genetic analysis 
using DNA extracted from 1–2 contour feathers plucked 
from each bird.
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The loggers recorded GPS locations between 05:00 and 
22:59 UTC, i.e. from 1 (summer solstice) to 3 h (winter 
solstice) before sunrise to 1 to 3 h after sunset. All log-
gers were provided with an accelerometer (ACC) that 
registered the acceleration of the bird on a three-dimen-
sional space, providing a 3D-graph representation of the 
bird’s movements. We programmed the ACC between 
05:00 and 21:00 UTC, obtaining 15-s activity bouts every 
15  min, with a byte count of 1188 and 16.7  Hz. During 
the breeding season, we programmed the ACC of males 
during only 30  min (07:30–08:00 UTC), but using an 
intensive recording schedule of 45-s activity bouts every 
minute, because we were interested in recording in detail 
their display behaviour during the period of most inten-
sive display at dawn for other studies (see more details 
below, in section Habitat use and selection analyses), and 
ACCs don’t allow double programming within a day. The 
loggers were programmed to record one GPS location 
every five minutes when the charge level was high (95% 
of the time) and every 30 min otherwise. Of all ACC data 
recorded, we selected those coinciding with a GPS loca-
tion, i.e. every 5 min, in order to be able to relate loca-
tion with activity. Data were collected and stored in the 
Movebank repository (https:// www. moveb ank. org/), and 
downloaded through the phone network, without having 
to recapture the birds.

Data processing
A total of 3.2 million GPS locations from two years (2018, 
2019) were used in this study. We distinguished two sea-
sons in the annual cycle of houbaras, breeding and non-
breeding [38]. Due to differences in body size and weight, 
ecological requirements, territory occupation phenology 
and migration dates of males and females (Abril-Colón 
et al. [38]; own unpubl. data), and because in the nomi-
nate subspecies both sexes exhibit different space and 
habitat use patterns [32, 80], we decided to analyse home 
range and resource use of each sex separately. In males, 
we defined as Breeding season the period they spent in 
their territories defending a display site. This period was 
delimited by the first and last displays (as a rule, respec-
tively, early November–December and March–April). In 
females, the breeding season started with their first visit 
to the nesting area and finished on the last day of their 
nesting attempt (respectively, late November and April) 
[38]. In males that did not perform sexual display, we set 
the start and end of their breeding season on the aver-
age starting and ending dates of the display period of all 
males displaying on that year. Similarly, in non-nesting 
females we established the start of their breeding season 
on the average date when nesting females visited their 
nesting areas, and the end when all females breeding 

successfully had finished rearing their chicks. In both 
sexes, the rest of the year was considered Non-breeding 
season.

We analysed the effect of factors intrinsic and extrinsic 
to the individual on their home range size. As intrinsic 
factors we considered body size, body weight and repro-
ductive status. For each bird we established a Reproduc-
tive Status based on the classification of Hingrat et  al. 
[80]. During the breeding season we distinguished two 
reproductive statuses in males: 1) Displaying, when the 
male showed some sexual activity (vocalization, dis-
play run or pre-copulatory movements, as revealed by 
accelerometry), and 2) Not displaying, when the male 
didn’t show any sexual activity over the whole breed-
ing season, either because it was immature, or due to a 
suboptimal body condition on that particular year. In 
females, we distinguished four reproductive statuses: 1) 
Mating, when the female visited males during the mat-
ing period; 2) Nesting, when the female was incubating 
(incubation lasts about 23  days; [82, 85], (3) Brooding, 
when the female had 1–2 months-old dependent chicks; 
4) Not breeding, when the female did not breed on that 
year. During the rest of the annual cycle (non-breeding 
season), all individuals were qualified with a Non-repro-
ductive status. We used Body weight as an indicator of fat 
content and general body condition, instead of the more 
commonly used index of weight/tarsus length, because 
the tarsus was not measured in all individuals in order to 
minimise handling time [86]. As an index of Body size we 
used the wing length [60, 62, 87]. In many bird species, 
and specifically in those more related to houbaras like 
other bustards and cranes, larger males are usually older 
and/or dominant [58, 59, 88–91], thus wing length may 
be also a proxy for age and dominance status.

We also analysed the following extrinsic factors: Pre-
cipitation was obtained from the nearest of a total of 
seven meteorological stations available in Lanzarote 
island, located at an average distance of 2.13 ± 1.42  km. 
We obtained the Density of individuals from a census 
carried out in the breeding season of 2018 (census dates: 
19 January-23 February; [39]. As for the non-breeding 
season, in order to minimize errors due to the higher 
mobility and lower faithfulness to a specific site during 
that period [38], we used the average values of two sur-
veys, respectively 20 May–21 June 2018 and 22 May–11 
June 2019. In order to obtain more representative den-
sity estimates, these were not restricted to just the area 
within the home range of our marked individuals,instead, 
we calculated them separately for eight regions: Zonza-
mas, Tahiche, Playa Blanca, Teseguite, Teguise, Costa 
Teguise, Playa Quemada and Soo. All houbara surveys 
were done by two teams each of two people driving vehi-
cles at low speed through tracks and roads (more details 

https://www.movebank.org/
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in [39]. As a proxy of Habitat quality, we used the Soil-
Adjusted Vegetation Index (SAVI), a vegetation index 
developed as a modification of the Normalized Differ-
ence Vegetation Index (NDVI) to correct for the influ-
ence of soil brightness when vegetative cover is low [92, 
93]. SAVI is a more suitable indicator than NDVI in arid 
and semiarid environments like Lanzarote [94]. Autocor-
relation is often cited as a problem associated with kernel 
density and other home range estimators (e.g., [95–98]. 
However, several authors have argued against sub-sam-
pling of data [99, 100] and defend that the autocorrela-
tion is not an issue for home range estimation, but has 
largely been a red herring, drawing attention away from 
the more important issue of obtaining a representative 
sample of locations [99, 101–103]. In studies based on 
telemetry, large samples are always better because they 
are more representative [102], and references therein).

Home range analyses
Home range sizes were estimated using kernel density 
estimators (KDE) [104] and minimum convex polygons 
(MCP) [105, 106]. Kernel methods are the most statisti-
cally efficient nonparametric density estimators [107], 
since they do not make assumptions about the data dis-
tribution [108–111]. We used 50% kernels (KDE50) to 
delimit the core or most used areas, 95% kernels (KDE95) 
to define the total home range area, and MCP98 to rep-
resent the maximum area used by individuals, which 
was calculated including all outlier locations. We used 
the “reproducible home ranges” package (rhr) in R soft-
ware for statistical computing [112, 113]. We established 
the reference bandwidth “href” as smoothing param-
eter for all individual home range estimations (see e.g., 
[114–116]). Although “href” may include areas outside 
an individual´s home range and thus may be positively 
biased, it shows a closer match between estimated and 
true home ranges with increasing sample size, so it is par-
ticularly recommended when sample size is large, as in 
our case [115]. We used monthly kernels for each bird as 
data points in the analyses, ignoring the tagging day and 
the two subsequent days to exclude any possible anoma-
lous behaviour due to the capture and marking process. 
Periods of more than 15 days were considered as whole 
months, and those of less than 15  days were discarded. 
For each individual we used data from an average track-
ing period of 12.7  months (SD = 6.66, range 3–24). We 
also calculated MCPs, but did not use them in subse-
quent generalized linear mixed models (GLMMs). MCPs 
clearly overestimate true home ranges due to their lack 
of concavity and assumption of equal use of all locations 
[96].

We used the Wilcoxon signed-rank test to examine 
differences in home range size between seasons, and 

the Mann-Whitney test to examine differences between 
sexes and reproductive statuses, and Chi-squared test to 
examine foraging habitat selection. For each sex, we used 
GLMMs [117] to test variation in home range size over 
the annual cycle with the factors as described above: (1) 
season, (2) breeding status, (3) precipitation, (4) density 
of females, (5) density of males, (6) body size,  (7) body 
weight, (8) habitat quality and (9) the interaction between 
season and precipitation. We considered this interaction 
because the effects of season on home range size could be 
expected to vary under different precipitation regimes, a 
frequent phenomenon in a semiarid area like the eastern 
Canary Islands. For example, we have detected a rela-
tionship between the onset of breeding and precipita-
tion (pers. obs.). Since we had repeated measures of the 
same birds in two years, we included individual and year 
as random factors in GLMMs to avoid pseudoreplication. 
The response variable showed a negative binomial distri-
bution and thus models were run using a loglink func-
tion. We used model averaging to calculate the predicted 
values. After computing parameter estimates averaged 
over all models of the dataset, we weighed them by using 
Akaike criterion at each model [118]. For all candidate 
models, we calculated the relevant parameters including 
the Akaike information criterion (AIC). Differences in 
AIC compared to the lowest AIC (ΔAIC), Akaike weight 
(Wi), deviance explained and degrees of freedom were 
calculated, and the best model based on AIC was iden-
tified [119]. We obtained the parameter estimates and 
confidence intervals for each covariate included in all 
candidate models with > 5% of the weight of evidence 
(Additional file  1: Tables S2, S3). GLMMs were per-
formed using the function glmer of the “lme4” package 
[120]. GLMMs were also performed to analyse varia-
tion in core areas. Since results were identical to those of 
home range analyses (see uploaded Related file), here we 
present only GLMM results for home range. The varia-
bles used did not show any collinearity problems. Mann-
Whitney and Wilcoxon signed-rank tests were performed 
using the “wilcox.test function” and Chi-squared test 
with the “chisq.test function” in software R version 3.6.3 
(https:// www.r- proje ct. org).

Habitat use and selection analyses
In addition to exploring which variables explained the 
size of home ranges, we investigated which habitat types 
houbaras selected for foraging within their home range. 
We could carry out these analyses thanks to acceler-
ometers (ACC), which enabled us to identify the ACC 
graph patterns and sequences that corresponded to the 
main activities of houbaras. To learn which graph pat-
tern corresponded to each behaviour, we observed 10 
marked birds from December 2018 to March 2019 (720 h 

https://www.r-project.org
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in total) using a 20–60 × telescope from a distance of 
ca.1000  m. We recorded the timing of each behaviour 
and compared these timed field observations with the 
ACC graphs. We used the sequences of these behav-
iours to train a model using Accelerater, a software based 
on supervised machine learning, and translated ACC 
records to behavioural modes [121, 122], http:// smell. 
huji. ac. il/). The model was trained on 2555 ground-tru-
thed ACC sequences of known behaviours, and it clas-
sified ten behavioral modes: display run, pre-copulatory 
movement, vocalization, flying, foraging, laying down, 
pre-display posture, preening, running and vigilant pos-
ture. After assigning each GPS location to one of these 
behaviours identified from the ACC graphs, we filtered 
the subsample of foraging locations to analyze resource 
selection. Among various model types available in Accel-
erater, we obtained RBF SVM as the best one, with 
92.95% correct classification (SD = 0.67), which means 
that all behaviours were identified with more than 90% 
accuracy.

As explained above, during the breeding season the 
ACCs of males were programmed to record accelera-
tion data only from 07:30 to 08:00  h, so for breeding 
males we knew their behaviour only during that half-
an-hour period. In order to estimate to what extent 
this could affect the foraging habitat use and selec-
tion results, we performed all calculations using both, 
this 30  min-ACC sample and the sample of GPS loca-
tions covering the period of maximum foraging activ-
ity (08:30 to 11:00  h), for which we had a GPS location 
every 5  min, but no behaviour associated to each GPS 
location. In other words, for that 2.5  h period we knew 
where each male was located, but not whether it was 
foraging, walking, or displaying. We did not appreciate 
any differences between both samples (07:30–08:00  h, 
and 08:30–11:00 h) and therefore we decided to use the 
07:30–08:00 h locations in all subsequent analyses.

To analyse foraging habitat selection, we compared the 
GPS locations where each marked bird was feeding with a 
similar number of random points (pseudo-absences) gen-
erated within its home range. To prevent these pseudo-
absences being on the same fields as foraging locations, 
we established a buffer of twenty metres for each forag-
ing location and ensured that no pseudo-absence fell 
within those buffers. Since unbalanced prevalences may 
provide unstable and unreliable estimates of discrimina-
tory power [123], a sampling effort was made to arrive 
at a balanced prevalence between presence (foraging 
locations) and pseudo-absence data (random locations). 
To increase the sample of breeding females and make it 
more similar to that of displaying males, in addition to 
the 6 females that bred in 2018–2019 we included breed-
ing location data from 9 females in 2021.

We obtained the farming status and characteristics of 
all fields within the home range of each houbara from 
the 2020 Crop Production Map for Lanzarote (https:// 
www. gobie rnode canar ias. org/ agric ultura/ temas/ mapa_ 
culti vos/ lanza rote/), and completed or modified it with 
the 2018 orthophoto (http:// www. grafc an. es) and direct 
observations of each field on the ground. This ground 
truthing was done by visiting all fields comprised within 
the home ranges of our marked birds and talking to as 
many owners as possible to determine the farming cycle 
phenology and other details of each field. The habitat 
types considered in this study were: Pastures; Shrubland 
of Launaea arborescens, where we distinguished two 
shrub density categories, high and low; Fallow, distin-
guishing a) Sweet potato fallow (where sweet potato was 
grown in the previous year), b) White fallow (ploughed 
continuously to prevent weed growth), c) Green fal-
low (no longer cultivated, weeds are left to grow); 
Alfalfa Medicago sativa fields, Orchards, Clean orchards 
(orchards where weeds are not allowed to grow), Sweet 
potato fields, and Sweet potato/fallow (mostly sweet 
potato crops with annual rotation of a cultivated sector 
and an uncultivated sector in the same field).

We compared the distributions of foraging and pseudo-
absence locations of both sexes during the two seasons, 
breeding and non-breeding, using separate GLMMs for 
each sex and season. In order to get well-defined resource 
selection patterns for these two seasons, we used data 
from only the central months of the season when all birds 
of the sample were either breeding or had already started 
a post-breeding phase, i.e. December to February for the 
breeding season, and June to August for the non-breed-
ing season. To avoid pseudoreplication we used data 
from only one year for each bird. We used GLMMs with 
binomial error structure to infer resource selection from 
use-availability data with presence vs pseudo-absence as 
response variable, individual as random factor, and habi-
tat types (pastures, high or low density shrubland, sweet 
potato fallow, white fallow, green fallow, alfalfa, orchards, 
clean orchards, sweet potato and sweet potato/fallow-
fields) as predictors. Presences and pseudo-absences for 
the resource selection analysis were plotted in ArcGIS, 
and software R version 3.6.3 (https:// www.r- proje ct. org) 
was used for all statistical analyses using the packages rhr 
[113], MuMIn [124] and lme4 [120].

Results
Home range, core area and maximum area used
During the breeding season, the 19 displaying males and 
6 breeding females used smaller home ranges (K95), core 
areas (K50), and maximum areas (MCP98) than the 6 
males that did not display, and 18 females that did not 
breed (males: respectively, W = 13, p = 0.005; W = 13, 

http://smell.huji.ac.il/
http://smell.huji.ac.il/
https://www.gobiernodecanarias.org/agricultura/temas/mapa_cultivos/lanzarote/
https://www.gobiernodecanarias.org/agricultura/temas/mapa_cultivos/lanzarote/
https://www.gobiernodecanarias.org/agricultura/temas/mapa_cultivos/lanzarote/
http://www.grafcan.es
https://www.r-project.org
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p = 0.003; W = 15, p = 0.006; females: W = 14, p = 0.013; 
W = 13, p = 0.009; W = 14, p = 0.013; Mann-Whitney 
test; Table 1; see monthly values for both sexes in Addi-
tional file 1: Table S1). During the non-breeding season, 
the 19 males that had displayed used larger home ranges 
than during the breeding season (V = 16, p = 0.002 
in K95; V = 8.5, p < 0.001 in K50; V = 29, p = 0.008 in 
MCP98; Wilcoxon signed-rank test). The same trend was 
observed in the 6 females that had bred, although female 
differences did not reach significance, probably due to 
the small sample size (V = 3, p = 0.625 in K95; V = 1, 
p = 0.250 in K50; V = 4, p = 0.875 in MCP98; Wilcoxon 
signed-rank test). During the non-breeding season, the 
home ranges of the 19 males that had displayed and those 
of the 6 females that had bred did not significantly dif-
fer in size from the home ranges used during the breed-
ing season by the 6 males that did not display (W = 44.5, 
p = 0.859 in K95, W = 63, p = 0.862 in K50: W = 46.5, 
p = 0.524 in MCP98) and the 18 females that did not 
breed (W = 24, p = 0.721 in K95, W = 27, p = 0.487 in 
K50 and W = 27, p = 0.957 MCP98; Mann-Whitney test; 
Table 1).

As for sexual differences, during the breeding season 
there were no differences in home range size between 
displaying males and breeding females (W = 68, p = 0.224 
in K95; W = 60, p = 0.113 in K50; W = 79.5, p = 0.491 
in MCP98), nor between non-displaying males and 
non-breeding females (W = 32.5, p = 0.555 in K95, 
W = 26, p = 0.953 in K50, W = 37, p = 0.2625 in MCP98; 

Mann-Whitney test; Table  1). During the non-breeding 
season, there were no sexual differences in home range 
size (W = 213, p = 0.885 in K95; W = 183, p = 0.693 in 
K50; W = 181.5, p = 0.480 MCP98; Mann–Whitney 
test; Table  1). The mean overlap between post-breeding 
areas in different years was 61.6% in males and 47.2% 
in females. As for breeding areas, the mean overlap was 
52.1% in males and 42.2% in females (Additional file  1: 
Fig. S1).

Although the bivariate analysis did not show signifi-
cant sexual differences within a given season, we per-
formed generalized linear mixed models separately for 
males and females, because both sexes exhibit various 
contrasting features during their annual cycles (e.g. dif-
ferent territory occupation and migration phenologies, 
Abril-Colón et al. [38]), and certain factors could have 
distinct effects on male and female home ranges. Thus 
for each sex we obtained multiple models to describe 
home range (Tables  2, 3, details in Additional file  1: 
Tables S2, S3), of which for the sake of brevity and clar-
ity here we make inferences only from those selected 
though Akaike criteria as the most plausible ones. The 
best model explaining home range in males included 
season, precipitation, reproductive status, body weight 
and habitat quality, plus the interaction between sea-
son and precipitation (Table  2). A second valid model 
included also the effect of body size. Sums of the AIC 
weights showed season, reproductive status, precipi-
tation and body weight to be the best predictors of 

Table 1 Mean home‑range (KD95), core area (KD50) and maximum area used (MCP98) by male and female houbara bustards 
depending on reproductive status and season

Values given are means  (km2) ± SD, and range (min–max) for both study years
1 Total samples were 22 males and 21 females, but 3 males and 3 females changed their reproductive status between both study years and therefore were included in 
both subtotals

Displaying n =  191 Not displaying
n =  61

Breeding
n =  61

Not breeding
n =  181

Males Females

Breeding season

K95 0.61 ± 0.43
(0.19 − 1.93)

2.61 ± 1.52
(0.37 − 5.34)

0.89 ± 0.60
(0.14 − 8.10)

2.13 ± 1.17
(0.37 − 7.57)

K50 0.08 ± 0.05
(0.02 − 0.19)

0.48 ± 0.32
(0.05 − 0.99)

0.16 ± 0.12
(0.02 − 3.12)

0.58 ± 0.56
(0.05 − 1.91)

MCP98 1.06 ± 0.78
(0.27 − 3.57)

4.40 ± 2.60
(0.58 − 8.58)

1.31 ± 1.03
(0.39 − 10.59)

2.84 ± 1.61
(1.06 − 8.69)

Males (n = 22) Females (n = 21)

Non‑breeding season

K95 1.12 ± 0.61
(0.25 − 2.60)

1.43 ± 1.18
(0.23 − 9.05)

K50 0.20 ± 0.10
(0.04 − 0.44)

0.28 ± 0.30
(0.04 − 1.25)

MCP98 1.98 ± 1.57
(0.37 − 6.59)

2.72 ± 2.55
(0.27 ± 9.81)
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home-range size (wi = 1). These models confirmed the 
variation of home range with season and with repro-
ductive status, with non-displaying individuals using 
larger areas than displaying individuals (Additional 
file  1: Table  S2). In addition, home ranges were larger 
when precipitation, body weight and habitat quality 
were lower (Additional file  1: Table  S2). Also, a posi-
tive interaction between season and precipitation was 
found.

As for home ranges of females, the first two plausible 
models showed almost identical weights, so both may 
be considered equally valid (Table  3). These models 
included the effects of reproductive status, precipita-
tion, density of males (first model only) or females (sec-
ond model only), body size, body weight and habitat 
quality. A third, also valid model (ΔAIC < 2) included 
both, density of males and density of females. The sums 

of AIC weights showed reproductive status, precipita-
tion, habitat quality, body size, body weight, density of 
males and density of females to be the best predictors 
of home range size  (wi > 0.656). As in males, reproduc-
tive status had in females a significant and even higher 
effect than in males, with nesting females showing the 
smallest areas, non-breeding females the largest, and 
mating and brooding intermediate values (Table  3, 
Additional file 1: Table S3, Additional file 1: Fig. S2). In 
females, home range increased with precipitation and 
habitat quality, in contrast to what happens in males. 
Female home range also increased when body size was 
smaller, and when density of females and males (first 
model and second model, Table  3) (were lower (Addi-
tional file  1: Table  S3). Finally, the fourth and fifth 
candidate models included season, a variable that was 
not retained in the first three models (Table  3). These 
fourth and fifth models showed ΔAIC < 2 and therefore 
could also be considered plausible to some extent, but 
as shown in the bivariate analysis, the effect of season 
was apparently less pronounced in females than in 
males.

Selection of foraging habitat types
In both sexes, the distribution of foraging locations 
among habitat types differed from that of locations not 
used for foraging (males: X2 = 6568.68, df = 10, p < 0.001 
in the breeding season; X2 = 27,179.15, df = 10, p < 0.001 
in the non-breeding season; females: X2 = 1158.17, 
df = 10, p < 0.001 in breeding season, X2 = 4137.94, 
df = 10, p < 0.001 in the non-breeding season; Chi-square 
test). During the breeding season, displaying males and 
breeding females foraged almost exclusively on non-cul-
tivated land, using primarily low-density Launaea shrub-
land and pastures (Additional file 1: Table S4). The only 
two non-displaying males and four females of our sample 
that did not breed used pastures as their main foraging 

Table 2 Candidate generalized linear mixed models analysing the effect of intrinsic and extrinsic factors on the home range size (K95) 
of males (n = 22)

We analysed the effect of season (S), precipitation (P), reproductive status (RS), body size (BS), body weight (BW), habitat quality (HQ), density of females (DF), density 
of males (DM), and the interaction between S and P (S * P). Summary statistics include Akaike information criterion (AIC), difference in AIC (ΔAIC), Akaike weight (Wi), 
deviance explained and degrees of freedom (df ). Models are ranked from best to worst according to AIC

AIC ΔAIC Wi Explained deviance df

S + P + S*P + RS + BW + HQ 9675.19 0.431 25.70 9

S + P + S*P + RS + BS + BW + HQ 9676.83 1.64 0.178 25.77 10

S + P + S*P + RS + BW 9678.04 2.85 0.110 24.69 8

S + P + S*P + RS + DF + DM + BS + BW + HQ 9678.25 3.06 0.081 26.30 12

S + P + S*P + RS + DM + BS + BW + HQ 9678.26 3.07 0.075 25.89 11

S + P + S*P + RS + DF + BS + BW + HQ 9678.55 3.36 0.070 25.83 11

S + P + S*P + RS + DF + BW 9679.33 4.14 0.054 24.83 9

Table 3 Candidate generalized linear mixed models analysing 
the effect of intrinsic and extrinsic factors on the home range 
size (K95) in female houbara bustards (n = 21)

We analysed the effect of season (S), reproductive status (RS), precipitation (P), 
density of females (DF), density of males (DM), body size (BS), body weight (BW), 
and habitat quality (HQ). Summary statistics include Akaike information criterion 
(AIC), difference in AIC (ΔAIC), Akaike weight (Wi), deviance explained and 
degrees of freedom (df ). Models are ranked from best to worst according to AIC

AIC ΔAIC Wi Explained 
deviance

df

RS + P + DM + BS + BW + HQ 569.96 0.233 32.14 11

RS + P + DF + BS + BW + HQ 569.99 0.03 0.230 32.16 11

RS + P + DF + DM + BS + BW + HQ 570.77 0.81 0.156 32.64 12

S + RS + P + DM + BS + BW + HQ 570.97 1.01 0.141 32.54 12

S + RS + P + DF + BS + BW + HQ 571.71 1.75 0.097 32.27 12

S + RS + P + DF + DM + BS + BW 
+ HQ

572.14 2.18 0.079 32.90 13

RS + DF + BS + BW + HQ 573.65 3.69 0.037 29.87 10

S + P + DF + BS + BW + HQ 574.33 4.37 0.026 27.76 8
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habitat, followed in the case of females by sweet potato, 
green and sweet potato fallows, and low-density shrub-
land (Additional file 1: Table S4).

During the non-breeding season, the use of cultivated 
land increased in both sexes, reaching 26.58% of all for-
aging locations in females, and 17.73% in males. This 
seasonal increase in the use of cultivated fields was signif-
icant in both sexes (X2 = 1069.2, df = 1, p < 0.001 in males, 
X2 = 4626.9, df = 1, p < 0.001 in females; Chi-square test; 
Additional file  1: Table  S4). A significant majority of 
these cultivated fields were irrigated (X2 = 1110, df = 1, 
p < 0.001, X2 = 365.3, df = 1, p < 0.001; Chi-square test, 
comparing locations in irrigated vs non-irrigated fields 
respectively in males and females; Additional file  1: 
Table  S4). In this season both sexes continued showing 
a preference for Launaea shrubland as the main forag-
ing ground, though males used higher density shrubland 
more than lower-density shrubland. Females spent more 
time foraging on sweet potato fields, green fallows and 
alfalfa fields than in the breeding season, and used these 
habitats more than males (Additional file 1: Table S4).

The results of GLMMs showed that houbara bustards 
chose foraging sites that were significantly different from 
randomly selected pseudo-absence locations. We found 
noteworthy seasonal differences and some sexual differ-
ences in foraging habitat selection. In the breeding sea-
son, displaying males selected low-density shrubland and 
green fallows as main foraging habitats, avoiding shrub-
land with high density coverage, sweet potato fallow and 

white fallows, while in the non-breeding season they 
showed a preference for high-density shrubland, sweet 
potato fields and orchards (Table  4; Additional file  1: 
Tables S5 and S6). As for females, during the breed-
ing season they selected pastures, green and white fal-
lows and sweet potato/fallow (Table 4; Additional file 1: 
Table  S7). During the non-breeding season females 
showed similar selection patterns as males, avoiding pas-
tures, white fallows, clean orchards and sweet potato/
fallow, and selecting high-density shrubland and green 
fallows, together with sweet potato fields (Table 4; Addi-
tional file 1: Table S8).

Discussion
Our results show that much of the variation in home 
range and foraging habitat selection was determined 
by season and reproductive status. During the breeding 
season, displaying males and nesting females had much 
smaller home ranges than males and females not involved 
in reproduction. Among non-breeding individuals with 
large home ranges, our sample surely included some 
immature birds, as suggested by the negative relationship 
between home range and wing length found in models. 
This relationship was significant in females and also neg-
ative though not significant in males, in which the only 
size-related variable retained in the best model was body 
weight, also with negative effect on home range. These 
results agree with the large areas used by dispersing juve-
niles in the nominate houbara subspecies [125], as well 

Table 4 Estimates of generalized linear mixed models describing fine‑scale foraging habitat of male and female houbara bustards 
during both seasons

GLMMs were fitted using binomial error structure and individual as random factors. GPS data were filtered to include only foraging locations

P‑values: ***p < 0.001, **p < 0.01, *p < 0.05, (*) p < 0.1
1 Due to the small sample size and low explained deviance, the GLMM for non‑displaying males and not breeding females is not included in Additional file 1. 2 Mostly 
sweet potato crops with annual rotation of a cultivated sector and an uncultivated sector of the same field

Predictors Males1 Females1

Breeding season Non-breeding season Breeding season Non-breeding season

Displaying Breeding

Pastures − 2.389*** − 1.334*** 0.554*** − 0.179**

High density shrubland − 3.079*** 2.245*** − 0.934*** 0.315***

Low density shrubland 1.177*** − 0.254 − 0.326*** 0.029

Sweet potato fallow − 4.242*** 24.007 22.160 − 1.494***

White fallow − 0.598(*) − 23.872 2.411*** − 4.306***

Green fallow 2.506*** 0.271 1.118*** 0.266***

Alfalfa – – – 23.048

Orchards 3.072 0.467** − 20.73 − 2.269***

Clean orchards − 9.591 − 2.756*** − 34.94 − 0.771***

Sweet potato − 3.864 1.512*** 33.11 1.150***

Sweet potato/fallow 2 − 3.947 − 0.152 0.536* − 1.083***

Explained deviance 25.56 22.38 24.87 19.64
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as with the common pattern found in other bird species, 
where non-breeding adults, floaters, or dispersing imma-
tures show larger home ranges than breeding individuals 
[18, 19, 126, 127]; see review in [13].

The small home ranges found in displaying males and 
the largest home ranges of mating females are consist-
ent with the exploded lek mating system attributed to 
this species [31, 32, 37, 38, 80]. Within the lek area, male 
houbaras defend small territories where they display 
over several months [128] They remain faithful to these 
territories throughout the whole breeding season and 
between years [38, 129]. As for breeding females, their 
home ranges are large during the mating phase, when 
they typically visit several males [32] and even mate with 
more than one as suggested by the high proportion of 
broods with multipaternity [130]. The positive effect of 
body weight on home range found only in females sug-
gests that females moving over larger areas and visit-
ing more males are those in better condition. In males, 
home range is negatively related to body weight, because 
males in better condition spend more time displaying 
and therefore move less during that period than lighter, 
non-displaying males. Individual and seasonal variation 
in weight is higher in males than in females ([131–133], 
own unpubl. data for the Canarian subspecies). Males 
gain 15–20% weight to reach highest weights at the start 
of the breeding season, losing weight considerably dur-
ing the display period when they spend little time feed-
ing [37, 128]). Heavier males display more intensively 
and weight loss during display is correlated with display 
intensity, so weight represents a signal of male qual-
ity [131, 134–136], explaining the negative relationship 
between weight and home range found in our models. 
Differences related to reproductive status disappeared 
during the non-breeding season, when home ranges of 
individuals that had been involved in breeding activities 
equaled those of non-breeding and immature individuals, 
and all birds showed larger home ranges than during the 
breeding season.

Precipitation and habitat quality also showed opposite 
effects in males and females. Although monthly values 
of these two variables were not highly correlated and 
thus we included both in home range models, to some 
extent they have similar meanings in relation to repro-
duction in houbara bustards. Both had a positive effect 
on home range in female models and a negative effect in 
male models. Precipitation has a strong influence on cir-
cannual rhythms of species inhabiting arid environments 
[137–141], and these effects have been also documented 
in houbara bustards. For example, breeding is suppressed 
in dry years, and rainfall seems to trigger the onset of 
breeding in this species ([142–144], own unpubl. data), 
possibly through mechanisms inducing gonadal activity 

[133]. As for SAVI, it has been commonly used as a proxy 
for net primary production in poorly vegetated environ-
ments such as our study area [94]. As expected, monthly 
values of both precipitation and habitat quality had 
similar effects on the breeding phenology of houbaras 
because autumn and winter rainfalls produce a rapid 
growth of herbaceous vegetation, inducing males to start 
displaying and females to begin searching for a mate. This 
happens in less than a month, explaining why both varia-
bles produce the same effect within each sex but opposite 
effects on male and female monthly home range models. 
Shortly after the first rainfalls males occupy their territo-
ries and reduce their home range to a minimum, whereas 
females increase it while searching for mates.

With respect to differences in foraging habitat related 
to season and reproductive status, we found that dur-
ing the breeding season both sexes showed a preference 
either for low density shrubland or pastures, though the 
most selected of these habitats differed between sexes, 
males preferring shrubland and females pasture land. 
This sexual difference might only be due to the fact that 
males use high points to display, and these are usually 
occupied by shrubland, whereas pastures are mostly on 
valleys. In any case, both habitat types really differ from 
each other only very slightly, representing quite areas 
where both sexes can carry out their breeding activi-
ties without being disturbed. Both offer similar amounts 
and diversities of weeds and invertebrates consumed by 
breeding houbaras [145, 146]. A third, much less used 
but still selected foraging habitat were green fallows, 
where weeds are allowed to grow and thus offer similar 
food as pastures or shrublands. During this season, both 
sexes avoided foraging in high density shrubland, proba-
bly because in this habitat visibility is hindered by bushes. 
A good visibility is crucial for displaying males [37, 129, 
147] and for nesting females of the nominate subspecies, 
which avoid areas with tall vegetation [37]. In great bus-
tards, males and females also select display and nesting 
sites with good visibility, probably to attract more females 
in the case of males, and to reduce predation pressure in 
both sexes [148, 149]. In houbaras, concealment provided 
while foraging by low density shrubland might be appro-
priate for nesting and brooding females, but a too high 
shrub density might not be appropriate.

During the non-breeding season foraging habitat mod-
els showed a shift to high density shrubland where birds 
find quiet and hidden sites for feeding in summer, no sig-
nificant selection for low density shrubland, and negative 
selection for pastures. During this season, birds of both 
sexes increased significantly the use of cultivated land, 
particularly sweet potato fields, and selected irrigated 
over non-irrigated fields. A previous study found that 
in the island of Fuerteventura houbaras selected gavias 
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as foraging grounds, a traditional mode of cultivation 
designed to retain rain and runoff water equivalent to 
modern irrigation systems [146]. Although natural grass-
lands are originally the main habitat of the family Otididae 
[81], several species forage on farmland, and increase the 
use of cultivated fields during the non-breeding season, 
e.g. the Great Bustard (Otis tarda) ([150–154]), the Lit-
tle Bustard (Tetrax tetrax) [155, 156], or the MacQueeen’s 
bustard [157]. Cultivated areas represent an additional 
food resource for many other birds, which have adapted 
to human-induced landscape changes, and in some cases 
have become agriculture specialists [158, 159]).

Regarding sexual variation, in contrast to what we 
expected, we found no differences between males and 
females in their average home ranges during either the 
breeding or non-breeding season. Neither we found 
important sexual differences in foraging habitat selec-
tion. Essentially, both sexes had the same requirements 
regarding home range and food resources. It seems that 
sexual dimorphism, sexual segregation, and differences in 
roles during reproduction and in phenologies of migra-
tion and display and nesting territory occupation are 
not enough to cause great sexual differences in average 
home range size or foraging habitat, either in the breed-
ing or non-breeding season. However, sexual differences 
in behaviour could have indeed determined the different 
sign of the relationship between home range and some 
of the variables in our models. For example, an increas-
ing density of conspecifics didn’t seem to affect much the 
home range of males, whereas it determined a significant 
reduction of home range in females. A density-dependent 
restriction on home range size is expected when breed-
ing habitat is limited [12, 64, 160–163]. Density-depend-
ent effects on home range may probably be small during 
the non-breeding season, when houbaras can aggregate 
in small flocks of up to 5–6 individuals, but may affect 
territories of nesting and brooding females due to com-
petition with neighbour females or sexual harassment 
when male density is high. The size of male territories, 
in contrast, didn’t seem to be as density-dependent as 
that of females. A male territory may be restricted to the 
minimum area necessary to perform display and mating 
activities without being disturbed by neighbour males, 
and thus probably does not extend farther even under 
low conspecific densities, simply because a larger terri-
tory is not economically defendable. In support of this 
conclusion, the variability and maximum extent of home 
ranges were smaller in displaying males than in breeding 
females. In sum, home range sizes of males and females 
seem to fit with the exploded lek mating system attrib-
uted to houbara bustards. While in classical lek species 
female home ranges are larger than those of males, in 
resource-defence polygyny systems both sexes show no 

differences in home range size, and exploded leks occupy 
an intermediate position in this gradient [164–166].

Beyond the small sexual differences in density-depend-
ence discussed above, home ranges and core areas of Canar-
ian houbaras are much smaller than those reported for the 
nominate subspecies in north Africa (home ranges of 17 
 km2 in males and 146  km2 in females, core areas of about 
1  km2; [32], and for MacQueen’s bustard (home ranges of 
116–977  km2, core areas of 13–128  km2 [142, 151].

Conclusions
Male and female breeding home ranges were small dur-
ing the breeding season, allowing for a high density of 
houbaras in the study area. During the breeding season 
both sexes selected non-cultivated habitats with low 
shrub coverage as foraging grounds, avoiding high den-
sity shrubland. During the non-breeding season Launaea 
arborescens shrubland continued to be the main forag-
ing habitat, but both sexes spent a significant amount of 
time foraging on cultivated fields, and notably selected 
irrigated farmland (18% foraging locations in males, 27% 
in females). These irrigated fields seem to be of consider-
able value for the survival of houbaras during the driest 
months of the year, when natural resources in shrublands 
and pastures are scarcer. However, these cultivated fields 
need to be close enough to high density shrubland areas, 
the major foraging ground during that season, in order to 
be accessible to houbaras during their daily foraging rou-
tines. Thus, an appropriate mixture of shrubland, green 
fallows and a few irrigated fields seem to be the best habi-
tat for houbaras in that season.

Finally, our study shows how Canarian houbaras, origi-
nally a desert-dwelling species, have developed the nec-
essary adaptations to benefit from resources provided by 
current farmland conditions in our study area. Maintain-
ing current habitat conditions in Lanzarote, i.e. a mosaic 
of Launaea shrubland with adequate amounts of fallows 
and irrigated cultivated fields, and improving those in 
Fuerteventura, should be prioritized as management 
measures in order to safeguard the future of this endan-
gered species.
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