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Abstract
Background: Studies of animal behaviour, ecology and physiology are continuously benefitting from progressing 
biologging techniques, including the collection of accelerometer data to infer animal behaviours and energy 
expenditure. In one of the most recent technological advances in this space, on-board processing of raw 
accelerometer data into animal behaviours proves highly energy-, weight- and cost-efficient allowing for continuous 
behavioural data collection in addition to regular positional data in a wide range of animal tracking studies.

Methods: We implemented this latest development in collecting continuous behaviour records from 6 Pacific 
Black Ducks Anas superciliosa to evaluate some of this novel technique’s potential advantages over tracking studies 
lacking behavioural data or recording accelerometer data intermittently only. We (i) compared the discrepancy of 
time-activity budgets between continuous records and behaviours sampled with different intervals, (ii) compared 
total daily distance flown using hourly GPS fixes with and without additional behavioural data and (iii) explored how 
behaviour records can provide additional insights for animal home range studies.

Results: Using a total of 690 days of behaviour records across six individual ducks distinguishing eight different 
behaviours, we illustrated the improvement that is obtained in time-activity budget accuracy if continuous rather 
than interval-sampled accelerometer data is used. Notably, for rare behaviours such as flying and running, error 
ratios > 1 were common when sampling intervals exceeded 10 min. Using 72 days of hourly GPS fixes in combination 
with continuous behaviour records over the same period in one individual duck, we showed behaviour-based daily 
distance estimation is significantly higher (up to 540%) than the distance calculated from hourly sampled GPS fixes. 
Also, with the same 72 days of data for one individual duck, we showed how this individual used specific sites within 
its entire home range to satisfy specific needs (e.g. roosting and foraging).

Conclusion: We showed that by using trackers allowing for continuous recording of animal behaviour, substantial 
improvements in the estimation of time-activity budgets and daily traveling distances can be made. With integrating 
behaviour into home-range estimation we also highlight that this novel tracking technique may not only improve 
estimations but also open new avenues in animal behaviour research, importantly improving our knowledge of an 
animal’s state while it is roaming the landscape.
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Introduction
Many fields within animal biology and notably studies 
in animal behaviour and movement ecology have ben-
efited greatly from the development of advanced biolog-
ging techniques [1–3]. Nowadays, tags can not only log 
spatiotemporal information of animals, but also record 
animal physiology, behaviour and ambient environmen-
tal information by various on-board miniature sensors 
[4]. Among the sensors, accelerometer (ACC) data has 
been mainly used to study animal behaviours and energy 
expenditure [e.g. 5]. However, large amounts of raw ACC 
data can be a burden to limited on-board storage or 
device battery capacity when data have to be transmitted 
remotely [6].

On-board data processing, to shrink raw data volume, 
is one way to solve the constraints in remote behavioural 
data collection and transmission using ACC data. Popu-
lar ACC data processing procedures, be it used on-board 
of tracking devices or during post-processing, involve 
the calculation of activity indices over pre-defined time 
windows of ACC data such as ODBA (Overall Dynamic 
Body Acceleration, e.g. [7]), VeDBA (Vectorial Dynamic 
Body Acceleration, e.g. [8]) and RMS (Root Mean Square, 
e.g. [9]). These indices have been mostly used to repre-
sent activity levels of tracked animals (e.g. RMS; [10]) or 
to study animals’ energy expenditure (e.g. VeDBA; [11]). 
When these indices were calculated on-board of track-
ers, the research period could be extended considerably, 
even when using small trackers on small animals. As a 
prime example, Bäckman, Andersson [12] used data log-
gers that summarized single axis ACC data into 12 activ-
ity indices (by scoring relative intensity of ACC data) 
per hour to study migration and activity patterns of the 
red-backed shrike Lanius collurio for up to 14.5 months. 
Similar data processing procedures have also been used 
in biomechanics studies using ACC data. For example, 
indices such as ODBA have been used to evaluate fish 
swimming behaviour and effort [13]. Also, tail beat fre-
quencies derived from ACC data were used to approxi-
mate swimming speed in sailfish Istiophorus platypterus 
[14]. Yet other on-board ACC data processing focussed 
on the animal’s biomechanics were used by Cox, Orgeret 
[15], summarizing ACC data on-board of satellite trans-
mitters to study swimming effort and pitch angle (body 
angle relative to the horizontal plane) of southern ele-
phant seals Mirounga leonine.

Accelerometers have also been widely used to study 
animal behaviour. ACC data is translated into behaviour 
using either unsupervised (e.g. [16]) or supervised (e.g. 
[17]) machine learning. Supervised behaviour classifica-
tion relies on direct behavioural observations to assist in 

the translation process of the ACC data, whereas unsu-
pervised behaviour classification relies on the ACC data 
itself and post-hoc behavioural interpretation of the ACC 
classes. Many supervised behaviour classification studies 
make use of machine learning where a range of summary 
statistics or “features” are calculated from the segmented 
ACC data. Next, using segments for which also direct 
behavioural observations are available, a behaviour clas-
sification model is “trained” using machine learning. In 
unsupervised behaviour classification studies, ACC data 
is clustered based on similarities in the ACC data after 
which expert opinion is used to allocate a likely behav-
iour to each cluster. For instance, unsupervised behav-
iour classification consists of processing ACC data by 
wavelet transformation followed by k-means clustering 
(e.g. [18]). Several studies applied on-board ACC data 
processing for animal behaviours and demonstrated their 
advantages. Nuijten et al. (2020) calculated raw ACC 
data into features on-board of trackers to study behav-
iours of Bewick’s swans Cygnus columbianus bewickii. In 
this way, they were able to sample one, 2 s bout of ACC 
data every 2  min instead of sampling one bout of raw 
ACC data every 15 min. They found that rare behaviours 
were picked up significantly more frequently when using 
on-board data processing. Korpela et al. (2020) used 
on-board behaviour classification through ACC data to 
control data sampling of the more energy consuming 
on-board camera to extend the runtimes of field experi-
ments. Recently, we developed a tracking system [19] 
using on-board continuous behaviour classification from 
ACC data that proved to be energy-, weight- and cost-
efficient and allowed for continuous recording of behav-
iour that could be transmitted through the 3G mobile 
network on a daily basis.

Our previous work [19] focused on describing the 
functioning and technical performance of the new track-
ing system using on-board and continuous behaviour 
classification in six free-ranging Pacific black ducks Anas 
superciliosa. Here, using the same data set, we focus on 
how this system can enhance our ecological understand-
ing of animals when compared to systems that lack this 
functionality (i.e. GPS tracker without accelerometer) or 
only record ACC data intermittently. The trackers used 
continuously recorded eight different behaviours comple-
mented with hourly GPS positions. Aside from providing 
details of the continuously recorded behaviour for these 
six individuals, we provide in-depth analyses covering 
72 days of continuous behavioural and hourly positional 
data for one individual. To illustrate how continuous 
on-board classification of animal behaviours can ben-
efit animal-behaviour and movement-ecological studies, 
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we used the data thus obtained to compare time-activity 
budgets using continuous versus intermittently sampled 
ACC data. We also compared energetically costly dis-
placement behaviour estimates calculated from continu-
ous behaviour records with calculations based on hourly 
positional data in isolation. Finally, we used the behav-
iour records for a more in-depth home range estimation, 
allowing focussing on which parts of their environment 
animals display specific (critical) behaviours and how 
their timing may vary on a daily and seasonal basis.

Home range is a concept in animal ecology that has 
found wide use since the beginnings of animal telemetry 
[20]. In most studies, home range is typically estimated 
based on animals’ geographical locations over time. 
Although these methods estimate the geographical distri-
bution of animals and how that may vary over time, they 
may not be able to inform on how and why animals use 
their home range to satisfy their (daily, annual and life 
cycle) needs. Instead of using time spent in spatial loca-
tions for home range description, Powell and Mitchell 
[21] proposed that more metrics can be used to better 
describe animals’ home range. For this they suggested a 
range of potential metrics such as energy expenditure, 
energy gained, giving-up densities for resources, danger 
from predators, potential for competition, potential for 
mutualisms and access to mates. Following some of the 
suggestions of Powell and Mitchell [21] to better assess 
the environmental requirements of animals, we calcu-
lated and depicted an animal’s home range integrating 
not only spatial and temporal information from GPS 
fixes, but also using energy expenditure and detailed 
behaviour information from ACC data. Aside from illus-
trating these advancements, we also discuss additional 
ways in which on-board data processing of ACC data can 
assist in studying and conserving free-ranging animals in 
their natural environments.

Methods
Duck tracking
Details on the properties and functioning of the GPS-
3G-Bluetooth trackers, including the on-board ACC 
data processing method and performance, as well as the 
deployment of the trackers on the six Pacific Black Ducks 
can be found in Yu, Deng [19]. In brief, the trackers 
logged GPS fixes at hourly intervals when battery levels 
allowed (i.e. >= 3.7v). The on-board accelerometer was 
configured at always-on mode, sampling tri-axial ACC 
data at 25 Hz. Every 10 min, tri-axial ACC data was sum-
marised into one mean overall dynamic body accelera-
tion value (ODBA). Every 2  s, ACC data was processed 
into 1 behaviour code out of 8 alternative behaviour 
types, namely dabbling, feeding, floating, flying, preen-
ing, resting, running and walking. The recorded GPS 
fixes, ODBA values and behaviour codes were scheduled 

to be transmitted through the 3G mobile network on a 
daily basis and stored on board for later transmission 
in case battery power was insufficient for transmission. 
Six Pacific Black Ducks Anas superciliosa were tracked, 
i.e. d5099_2 (3/2/2021-30/3/2021), d5241 (4/1/2021- 
13/3/2021), d5239 (23/12/2020-17/2/2021), d5246 
(3/2/2021-13/4/2021), d5248 (24/11/2020-21/1/2022) 
and d5210 (20/11/2020-4/10/2021).

Evaluation time-activity budget accuracy when sampling 
ACC data in bursts
We used the continuous behaviour records from the six 
ducks to evaluate time-activity budget accuracy using 
a range of ACC sampling intervals (i.e. every 10 s, 30 s, 
1  min, 3  min, 5  min, 10  min, 20  min, 30 and 60  min). 
We only used data from days where the behaviour data 
covered at least 99.5% of the day or > 43,000 behavioural 
records. We also discarded the first and the last day of 
tracking of each individual, leaving a total of 690 days of 
continuous behaviour records. With each sampling inter-
val, we chose the first behaviour of the day as the start-
ing point for sampling and sampled behaviours with an 
increment equal to the sampling interval until the end of 
the day. For every day of recording and each behaviour 
the difference was calculated between the proportion of 
time (%) it was observed using the continuous recordings 
minus the sampled recordings. Standard deviations of 
these daily differences per behaviour (sd_sampling) were 
calculated across all 690 days for each sampling interval. 
Daily mean proportion per behaviour (p) was calculated 
using all continuous behaviour records (i.e. one p value 
per behaviour). Error ratio per sampling interval per 
behaviour was calculated using equation:

 
error ratioij=

sd_samplingij

pj
,  (1)

where i represents different sampling intervals and j rep-
resents different behaviours. To evaluate how this error 
ratio varies between common and rare behaviours and 
depends on sampling interval, we calculated a multiple 
linear regression using the natural logarithm of the error 
ratio as dependent variable and the natural logarithm of 
sampling interval (in minutes) and the natural logarithm 
of p (%) as explanatory variables.

As shown in the supplemental material (supplementary 
Eq. 2.4), if we assume the sampled behaviour sequences 
to consist of independent observations, the expected 
error ratio equates to:

 
E_error ratioij =

√
pj(1−pj)

ni

pj
,  (2)
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where ni is the number of records in each day for a spe-
cific sampling interval i.

Notably for behaviour sequences collected at small 
sampling intervals, the assumption of independence is 
likely to be violated. In supplemental material we provide 
a measure of dependence for specific behaviours, which 
varies between 0 (no dependence) and 1 (full dependence 
(see supplementary Eq. 4.12):

 
Dependence =

∑k
i=1|qi − pi|

2(1 − pmin)
 (3)

where qi is the proportion of behaviour transition from 
the focal behaviour to all behaviours (i.e. k = 8), and pi is 
the daily mean proportion of each behaviour.

For each of the eight behaviours we used this equa-
tion to calculate how dependence varied with sampling 
interval.

Evaluating daily distance travelled
The distance travelled by animals is usually calculated by 
summing straight-line distances between adjacent GPS 
locations [22]. The flight bouts extracted from continu-
ous behaviour records of ducks provide another way to 
estimate travel distance (we did not consider correcting 
travel distance by walking or running as most distance 
was covered by flight). We used 72 days of data (from 
21/11/2020 to 31/01/2021) of one duck (d5210) to illus-
trate how integration of behavioural data can improve 
travel distance estimation. Excluding four days with 
incomplete GPS tracking, i.e. 15/01/2021, 16/01/2021, 
22/01/2021, 29/01/2021, 68 days’ worth of data were 
retained for this exercise. Daily flight distance was calcu-
lated by summing Haversine distances between adjacent 
fixes [23] within each day. For the alternative calculation 
of flight distance using behavioural data, we only used 
flight bouts of at least 6  s duration to reduce potential 
noise from occasional wing flapping while on land or 
water. Daily travel distance was calculated by multiplying 
daily total time in flight by the mean flight speed, where 
we assumed a mean fight speed of 15 m/s based on the 
median flight speed (15.47 m/s) of a similar species - mal-
lard Anas platyrhynchos - during non-migratory flight 
[24].

Behaviour and energy-expenditure based home ranges
We used the same 72 days of data of d5210 as mentioned 
in the previous section to evaluate the bird’s home range 
integrating energy expenditure and continuous behav-
iour records. To this end we rasterized the map of the 
region used by duck 5210 during this 72-day period in 30 
⋅ 30 m grid cells. Each ODBA value and behaviour record 
was geographically assigned by the nearest GPS fix in 
time. To represent the duck’s energy use in each cell, the 

sum of the bird’s ODBA divided by the total ODBA (i.e. 
energy percentage) over the 72-day period was calculated 
for each grid cell. For behavioural analyses we selected 
grid cells where the duck spent at least a total of 24  h 
over the total 72-day period. For each of the thus selected 
18 cells, the total relative time allocation to each of the 
8 behaviours was calculated. We used hierarchical clus-
ter analysis (function “hclust” in R) to cluster cells based 
on the similarity in behaviour expressed in each cell. We 
similarly clustered cells based on the time-of-day cells 
were used, using whole hour intervals. Finally, we calcu-
lated the total amount of time spent in each cell on each 
day within the 72-day focal period.

Results
Using 690 days of data from 6 ducks (Fig. 1), we illustrate 
that, as expected, uncertainty in time-activity budget 
estimation in each behaviour increased with an increase 
in sampling interval (Fig. 2). Moreover, the error ratio of 
the various behaviours not only increased with sampling 
interval, but also depended on the amount of time the 
animals typically engaged in a certain behaviour. A signif-
icant regression equation was found illustrating this (F(2, 
69) = 2073, P < .001, R2 of 0.983) and showing that error 
ratio was highest in rare behaviours (Fig. 3; ln[error ratio] 
= -4.398 ± 0.05 (SE) + 0.588 ± 0.012 ln[sampling interval] 
– 0.58 ± 0.014 ln[p]). The expected error ratios assum-
ing independence of observations (Eq.  2) were similar 
to those observed in the empirical duck dataset, nota-
bly for longer interval lengths (Fig. 3). This is likely due 
to dependency in behavioural observations being much 
higher at short compared to long intervals in our duck 
data (Fig.  4). Using Eq.  (2), we calculated a set of error 
ratios using a range of proportions (i.e. 0.005, 0.01, 0.02, 
0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and sampling intervals (10s, 
30s, 1 min, 3 min, 5 min, 10 min, 20 min, 30 min, 60 min) 
and presented these in Table 1.

The daily behaviour-based travel distances of d5210 
were significantly larger than GPS-based distances 
(Fig.  5; paired t-test, mean difference = 2482  m, where 
mean GPS-based distance = 5183 m; t = -7.154, P < .001). 
Two non-exclusive explanations exist for this discrep-
ancy. Firstly, the animal may not exclusively fly along a 
straight-line between consecutive fixes (Fig.  5 − 1). Sec-
ondly, the animal might have multiple separate flights 
between two adjacent GPS locations (Fig. 5 − 2).

The total area occupied by d5210 over the 72  day 
period was 0.188 km2 (by summing the areas of all occu-
pied grid cells in Fig.  6a). Using the behaviour-based 
approach as advocated by Powell and Mitchell [21] (see 
Methods), 18 30 × 30 m cells where the animal spent most 
of its time could be identified forming four geographi-
cal clusters (cells 1–2, 3–11, 12–13, and 14–18; Fig. 6a). 
Notably, however, clustering these 18 cells based on the 
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behaviours expressed in these cells yielded different clus-
ters from the geographical clusters (Fig. 6b). Cells 16, 6, 
5, 13 and 12 had larger proportions of walking and feed-
ing behaviours compared to all other cells in which rest-
ing and preening were the dominant behaviours (Fig. 6c). 
Within these important feeding cells for d5210, cells 13 
and 12 had larger walking proportions than cells 16, 6 
and 5, which might indicate that the food in these two 
cells was more spread out. Next, clustering the cells 
based on when they were used during the day resulted in 
four clusters that were again different from the geograph-
ical and behaviour-based clusters (Fig. 6d), showing clear 
diurnal patterns of cell usage. There was also a seasonal 
pattern visible (Fig.  6e) with a change in site use with 
date. For example, in December of 2020 and early January 
of 2021, d5210 mainly used site-2 as diurnal site, whereas 
after early January of 2021, d5210 mainly used site-4 as 
the diurnal site.

Discussion
In this study, we explored how continuous, on-board 
recorded behaviours may be used to supplement or 
improve on results using tracking methods that use no 
behavioural data or intermittent ACC data acquisition 
only. We showed that with increasing ACC data sampling 
interval, the error ratios of daily time-activity budgets 

estimation increased. This was particularly noticeable in 
rare behaviours. Time-activity budgets can also be used 
for activity-based energy expenditure estimation (e.g. 
[25]). Consequently, continuously recorded behaviours 
can not only improve time but also energy budget esti-
mation. Also, behaviour-based daily distance estimation 
was shown to significantly improve distance estima-
tion using GPS fixes only. Finally, in line with Powell 
and Mitchell’s (2012) notion, the continuously recorded 
behaviours allow more detailed investigation in how ani-
mals use their environment and therewith add an addi-
tional dimension to home range estimation.

We illustrated how sampling in bursts rather than con-
tinuous recording of ACC data impacts time-activity 
budget accuracy. Obviously, error ratio increased with 
increasing sampling interval (Fig.  2A) and the error 
ratios of rare behaviours (such as flying and running) 
were larger than those for common behaviours (such 
as preening and resting). For instance, at a 10-minute 
sample interval, the error ratios of flying and running 
were already close to 1 (Fig.  3). With even larger sam-
pling intervals, i.e. from 20 to 60 min, the medians of rare 
behaviours (i.e. flying, running and floating) are shifting 
away from zero towards larger positive values (Fig. 2A), 
which indicates that with longer sampling intervals rare 
behaviours will be more frequently missed. The expected 

Fig. 1 Continuous ethograms of six Pacific black ducks with date on the y-axis and time of day on the x-axis. Grey curves depict local sunrise and sunset 
times. For this representation, only the behaviour during the first 2 s of each half minute is used, the remaining 28 s being discarded
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error ratio estimations assuming independence of behav-
ioural observations (Eq.  2) compared reasonably well 
with the empirical error ratios from the ducks. How-
ever, as evidenced by the dependency estimates (Fig. 4), 
the assumption that consecutive behaviour records are 
independent was not met at short sampling intervals. 
As a general result we found that the error ratio estima-
tions from the duck data (Fig. 3) are slightly lower than 
the expected error ratios calculated using Eq.  (2). To 
reduce the error ratio the sampling interval needs to 
be shortened. For studies unable to record behaviour 
continuously, we suggest using Eq.  2 to gauge the most 
appropriate sampling interval in view of the expected 
proportions in which the behaviours of interest are likely 
to be shown. Next, researchers could also consider to 

have daily variations in sampling interval (e.g. daytime 
and night-time settings) depending on when focal behav-
iours are expected to be displayed. Although we here 
investigated statistical error due to sampling rate in the 
framework of biologging, similar attention should prob-
ably also be given to studies using more conventional 
behaviour-observation methods [26].

Aside from obtaining more accurate time-activity bud-
gets (i.e. durations of behaviours), the continuous record-
ings also allowed accurate assessment of the frequencies 
and sequences of the behaviours. We used flying behav-
iour as an example to illustrate how such increased 
accuracy can assist with informing us on details of the 
animals’ life. We showed behaviour-based daily distance 
was up to 540% larger than GPS-based daily distance, 

Fig. 2 Time-activity budget estimation differences between down sampled behaviour records and continuous behaviour records (using a total of 690 
days of continuous behaviour records across 6 ducks). (A) Density plots of differences for 9 sampling intervals varying from 10s to 60 min of 8 behaviour 
types ranked by their overall percentages. The three vertical lines in each density plot represent 25%, 50%, and 75% percentiles. (B) Daily total time in the 
rarest behaviour recorded: flying. For each duck day the total time spent flying was calculated from continuous behaviour records (marked with black 
dots) and data down sampled with 10 min interval (grey line without dots). The blue shades indicate the difference between the two calculations. Verti-
cal grey lines indicate the separations between ducks (e.g. data between the line marked with D5099_2 and the line marked with D5210 is the data of 
D5210). (C) As B but for the most frequently recorded resting behaviour
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which is consistent with the findings of Rowcliffe, Car-
bone [22] and Magowan, Maguire [27].

To illustrate how continuous behavioural monitoring 
when animals are out of sight opens up new avenues for 
detailing animals’ environmental requirements and sta-
tus, following the idea of Powell and Mitchell [21], we 
assessed the behaviour-based home range of one duck 
over a period of 72 days. Over this period the individual 
duck appeared to have a rather consistent daily routine 

using four sites consisting of respectively 2, 9, 2 and 5 ras-
ter cells of 30 × 30 m each (Fig. 6a). However, the behav-
iours of the duck expressed in these four different sites 
(and cells therein) varied greatly (Fig.  6b and c). There 
were for instance just 5 cells (i.e. 16, 6, 5, 13, 12) in which 
feeding was concentrated (Fig.  6b). Also, the pattern of 
site use showed a clear diurnal pattern, with sites 1 and 
3 being used during the night, and sites 2 and 4 during 
the day (Fig.  6d). However, although sites 1 and 3 were 

Fig. 4 Measures of dependency between behavioural observations (cf. Eq. 3) as a function of sampling interval for all eight behaviours that were distin-
guished across the 690 days in the six ducks. Dependency was calculated using Eq. 3

 

Fig. 3 Using the same data as Fig. 1, error ratio (i.e. uncertainty of time-activity budget estimation through permutations with 9 sampling intervals: 10 s, 
30 s, 1 min, 3 min, 5 min, 10 min, 20 min, 30 and 60 min) as a function of sampling interval and daily mean behaviour proportion (p) for the eight different 
behaviours. Colored dots indicate values out of permutations and colored diamonds indicate values calculated using Eq. 2
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both used as nocturnal sites, they were used differently. 
At site-3, the duck spent more time feeding and walking 
compared to site-1. Diurnal sites 2 and 4 were function-
ally similar, each site having a very small 2 and 1 cell area 
in which feeding was concentrated, the remaining area 
within the sites being used for resting mainly. To under-
stand why there was a seasonal shift of the duck from 
site-2 to site-4 in mid-January 2021 (Fig. 6e), we surveyed 
the local environment of site-2, where cell 5 and part of 
cell 6 appeared to be oat fields that were harvested in 
early January, explaining the behavioural change. The fine 
scale use of the landscape through continuous behaviour 
records as shown in this study can provide pinpoint guid-
ance for the effective and accurate investigation of an 

animal’s interaction with the landscape, with behaviour-
based home ranges potentially providing valuable guid-
ance for conservation.

Understanding of an animal’s behaviour is important in 
animal studies and various models have been employed 
to evaluate an animal’s behavioural state from movement 
data. Models employed to this effect include for instance 
state-space models (SSM), hidden Markov models and 
behavioural change-point analyses (e.g. [28–30]). Adding 
continuous behaviour records to positional data could 
importantly supplement the results of these models or 
possibly also replace them; instead of using statistical 
models to infer behavioural states, continuous behaviours 

Fig. 5 Continuous behaviour records and GPS fixes of duck 5210 from 21/11/2020 to 31/01/2021 (i.e. 68 days, excluding 4 days with failed fixes) for daily 
distance estimation. Scatterplot showing that the daily distances travelled based on continuous behavioural records are significantly larger than distances 
calculated from hourly GPS fixes (mean GPS-based distance = 5183 m, mean behaviour-based distance = 7665 m). The diagonal represents a 1:1 ratio. In-
sets [1] and [2] are schematic scenarios for two GPS fixes (i.e. with one hour difference in this study), where blue lines indicate GPS-based distances (i.e. Ha-
versine distance between two fixes) and red dotted lines indicate possible true flight routes if behaviour-based distance is larger than GPS-based distance

 

Table 1 Error ratios calculated with different proportions and intervals. The orange curve indicates the border of error ratio < 0.5 and > 0.5. The blue curve 
indicates the border of error ratio < 1 and > 1
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classified through ACC data likely result in finer resolu-
tion and more detailed behaviour information.

Although in this study we focussed on exploring how 
on-board continuously recorded behaviours can improve 
previous methods, there is great potentials for other use-
ful ACC derived metrics to be calculated on-board and 
provide valuable data for different research. The track-
ers used in this study already calculated a default ACC 
based ODBA index that was stored every 10-minutes. 
The favourable battery efficiency of this default feature 
indicates that other continuous on-board calculation 
and storage of ACC based indices are a possibility. Also, 

for biomechanics studies, frequency components [31] 
derived from ACC data could potentially be extracted, 
stored and transmitted at regular intervals. For reliable 
extraction of frequency components, one should fol-
low the Nyquist-Shannon criterion as also suggested 
in [17, 32]. In addition, the field of machine learning is 
continuously developing and novel computational solu-
tions might also offer promising alternatives, such as the 
tiny machine learning technology (tinyML; e.g. [33]). 
Also, on-board application of unsupervised machine 
learning models should be possible and should be con-
sidered since behavioural observations in free-ranging 

Fig. 6 Home range estimation of duck 5210 based on energy expenditure approximation, behaviours and geographical and temporal information. (a). 
Map depicting duck 5210’s whereabouts between 21/11/2020 and 31/01/2021 (i.e. 72 days). A total of 18, 30 × 30 m cells on this map could be identified 
in which duck 5210 spent more than 24 h individually. Based on geographical proximity, these 18 cells could be allocated to four key sites (cells 12 and 13 
belong to one site). The four insets depict enlargements of these 18 cells. Within each inset, the base map is on the left and on the right the colour of the 
number in each cell identifying the site and the background colour the energy percentage (see text). (b). Hierarchical clustering of the 18 cells based on 
(c) the behaviour (i.e. proportional distribution of behaviour) of duck 5210 in each cell. (d). Total time (over the 72 days) in each cell as a function of time 
of day. Colors of histograms represent hierarchical clustering based on hour percentage. (e). Total time in each cell as a function of date
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individuals might be difficult to obtain in some animal 
species.

Conclusion
We showed that by using trackers allowing for continu-
ous recording of animal behaviour, substantial improve-
ments in the estimation of time-activity budgets and 
daily traveling distances can be made. With integrating 
behaviour into home-range estimation we also highlight 
that this novel tracking technique may not only improve 
estimations but also open new avenues in animal behav-
iour research, importantly improving our knowledge of 
an animal’s state while it is roaming the landscape. Big-
data approaches and high-throughput wildlife tracking 
are opening new research frontiers in biology and ecol-
ogy [32]. We hope the new insights discussed in this 
study can trigger more method developments and appli-
cations using high-throughput animal behaviour records.
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