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METHODOLOGY

A framework for integrating inferred 
movement behavior into disease risk models
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Abstract 

Movement behavior is an important contributor to habitat selection and its incorporation in disease risk models has 
been somewhat neglected. The habitat preferences of host individuals affect their probability of exposure to patho-
gens. If preference behavior can be incorporated in ecological niche models (ENMs) when data on pathogen distri-
butions are available, then variation in such behavior may dramatically impact exposure risk. Here we use data from 
the anthrax endemic system of Etosha National Park, Namibia, to demonstrate how integrating inferred movement 
behavior alters the construction of disease risk maps. We used a Maximum Entropy (MaxEnt) model that associated 
soil, bioclimatic, and vegetation variables with the best available pathogen presence data collected at anthrax carcass 
sites to map areas of most likely Bacillus anthracis (the causative bacterium of anthrax) persistence. We then used a 
hidden Markov model (HMM) to distinguish foraging and non-foraging behavioral states along the movement tracks 
of nine zebra (Equus quagga) during the 2009 and 2010 anthrax seasons. The resulting tracks, decomposed on the 
basis of the inferred behavioral state, formed the basis of step-selection functions (SSFs) that used the MaxEnt output 
as a potential predictor variable. Our analyses revealed different risks of exposure during different zebra behavioral 
states, which were obscured when the full movement tracks were analyzed without consideration of the underlying 
behavioral states of individuals. Pathogen (or vector) distribution models may be misleading with regard to the actual 
risk faced by host animal populations when specific behavioral states are not explicitly accounted for in selection 
analyses. To more accurately evaluate exposure risk, especially in the case of environmentally transmitted patho-
gens, selection functions could be built for each identified behavioral state and then used to assess the comparative 
exposure risk across relevant states. The scale of data collection and analysis, however, introduces complexities and 
limitations for consideration when interpreting results.
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Background
Animal space use depends on the dynamic interplay 
between the internal state of an individual and the heter-
ogeneous landscape over which it moves [1]. Landscape 
heterogeneity is structured by the underlying eco-evolu-
tionary dynamics [2], ranging from readily measurable 

features such as vegetation type or canopy cover to more 
elusive features, such as infection risk. Ultimately, ani-
mal movement decisions are made based on trade-offs 
between the benefits of satisfying physiological needs 
and the costs of potential encounters with competitors, 
predators, or pathogens [3].

With recent advancements in the technologies that 
track animal positions through time [4], a number of 
path segmentation methods have been developed to 
parse movement tracks into behavioral states and more 
clearly interpret the motivations underlying the decision 
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to move [5, 6]. Such analytical methods offer insight into 
the space use patterns of animals during specific activity 
modes, allowing researchers to understand how resource 
selection differs depending on the internal state of an 
individual.

In an impressive meta-analysis of 859 habitat selection 
studies, McGarigal and colleagues [7] identified only nine 
studies in which multi-level analyses of different behavio-
ral states were treated as giving rise to differential habitat 
selection. These studies ranged across taxa and geograph-
ical regions, from the wandering albatross (Diomedea 
exulans) in the Southern Ocean [8] to the Canada lynx 
(Lynx canadensis) in the Northern Rocky Mountains [9]. 
In these cases and others, the incorporation of behavioral 
state resulted in distinctly different conclusions regard-
ing the space use patterns of the animals (e.g., [10–17]). 
Noting this important trend, others have emphasized the 
potential implications of ignoring behavioral state when 
considering habitat selection and animal space use pat-
terns [18], particularly in the context of conservation [19, 
20]. Despite this recognition, applications of behavioral 
analysis methods in habitat selection studies are still rare.

Notably, considerations of behavioral state have not yet 
permeated the literature regarding the transmission of 
disease, where host behavior is a fundamental element of 
pathogen spread. This is particularly the case for patho-
gens transmitted via environmental reservoirs [6, 21]. 
The spatial distribution of such pathogens can be readily 
modeled using remotely-sensed proxies of various envi-
ronmental factors [22], making studies of their overlap 
with host animals especially fruitful. Two prior studies 
of such overlap were carried out based on seasonal habi-
tat preference using a resource selection function (RSF) 
framework [23, 24]; while informative, these studies did 
not include avoidance behavior at the much finer step 
selection level [25, 26], as we present here.

The importance of particular behavioral states inferred 
from telemetry data has received limited attention, but 
the implications of excluding this information could be 
significant [27]. For example, habitat selection studies 
may offer insight into the evolutionary struggle between 
host and pathogen. If a pathogen is able to persist in areas 
that are favored by a host species, they have the potential 
to form an ecological trap [28], thereby increasing infec-
tions in the population due to host habitat preferences.

On the other hand, host animals often adjust their 
habitat selection when environments fluctuate or seasons 
change [29], with the perhaps inadvertent consequence 
of avoiding the highest exposure risk areas (e.g., [30]). An 
analysis performed on a full movement track may result 
in dramatically different estimates of selection coeffi-
cients than an analysis of periods when the host behaves 
in a way that may promote transmission (e.g., during 

feeding, [31–33]). This more nuanced approach may indi-
cate that the pathogen is more likely (e.g., if the selection 
coefficient for the habitat type that harbors the pathogen 
is higher than in the alternative analysis) or less likely 
(e.g., if the selection coefficient is lower) to be transmit-
ted than otherwise predicted when behavior is ignored. 
No matter the direction of the difference, the exclusion 
of behavioral information is likely to lead to an inaccurate 
interpretation of pathogen exposure risk. Similarly, the 
direct consideration of alternative behavioral states could 
illuminate important differences in the ways individuals 
mitigate risk at particular times, with implications for 
wildlife management.

The unique nature of environmentally-transmitted 
pathogens makes them ideal for demonstrating the 
importance of incorporating behavior in habitat selec-
tion studies. Here we use a set of movement tracks col-
lected from a system harboring one such pathogen, 
Bacillus anthracis, the causative agent of anthrax. Based 
on extensive research suggesting that the primary route 
of anthrax infections in ungulate species is through 
ingestion [31, 34, 35], we deduce that considerations of 
foraging behavior are important for judging the risk of 
infection [33]. Thus, we compare habitat selection mod-
els constructed using points assigned to the “foraging” 
versus the “directed” movement states; where the risk 
of pathogen exposure is likely significantly lower in the 
latter.

Fundamentally, our goal is to lay out a framework 
for considering both landscape-level disease risk and 
individual-level behavioral state and explore how the 
dynamics between the two may give rise to the observed 
movement patterns of animals. We do this by directly 
incorporating maps of predicted pathogen persistence in 
habitat selection models, enabling direct comparisons of 
resource use patterns and exposure risk across behavioral 
states. Ultimately, we demonstrate that the selection pat-
terns that emerge when we explicitly consider behavioral 
state are markedly different from an analysis that consid-
ers entire trajectories without accounting for different 
activity modes.

Materials and methods
Study site and disease system
For the sake of completeness, we provide a brief sum-
mary of the study site and disease system for which more 
details can be found elsewhere [22, 29]. Etosha National 
Park (ENP) is a fenced reserve (22,270 km2 ) located in 
the semi-arid savannah of northern Namibia. In terms 
of seasons, ENP is relatively cool and dry May–August, 
hot and semi-dry September-December, and hot and wet 
January–April. The average annual rainfall in the area 
associated with the data used in this study is 358 ± 127 
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mm. The vegetation in our study area is primarily grass-
land interspersed with shrub/tree veld populated primar-
ily with mopane (Colophospermum mopane) trees and 
bordering a large salt pan.

Anthrax is endemic in ENP, and plains zebra are the 
most common host species, constituting more than 50% 
of cases. Zebra anthrax mortalities peak in the late wet 
season (March–April) where case numbers are positively 
correlated with annual rainfall [31, 36]. Anthrax envi-
ronmental reservoirs, known as locally infectious zones 
(LIZs, [37]) are associated with positive carcass sites 
from current and prior years. Transmission is greatly 
enhanced when zebra graze at these LIZs [32, 33]. Hence, 
a recent history (i.e., going back 1–5 years) of a relatively 
high number of anthrax carcasses in a particular area 
increases the risks of exposure in that area compared 
with areas that had fewer carcasses over time.

Movement data preparation
Analyses were conducted on GPS tracks collected from 
zebra in Etosha National Park in Namibia in 2009 and 
2010. Step-selection functions were developed for the 
nine zebra (Equus quagga) for which GPS points were 
recorded during the anthrax seasons of those years 
(defined as the five-month period between February 1 
and June 30; [31, 38]). This temporal criterion resulted 
in a dataset consisting of five tracks recorded during the 
2009 season and six during the 2010 season. By split-
ting up tracks by season, the nine zebra produced eleven 
separate tracks, with two individuals having long enough 
tracks to be represented during both seasons (Table  1). 
The GPS track of each zebra consisted of positional fixes 
collected 20 minutes apart.

Anthrax risk map
A predictive layer of anthrax risk was created using an 
ensemble ecological niche modeling approach. Separate 
maps were created for the 2009 and 2010 anthrax sea-
sons based on the presence-only data gathered from sites 
in Etosha National Park that contained anthrax spores at 
least one year after the deposition of the carcass [33]. The 
carcass data consisted of 40 points at sites that contained 
non-zero concentrations of anthrax spores (in colony-
forming units per gram) during sampling one and two 
years following initial deposition. Of these 40 sites, 26 
were associated with carcasses deposited in 2010, 4 with 
carcasses deposited in 2011, and 11 with carcasses depos-
ited in 2012. Studies show that individual zebra avoid car-
cass sites for several months after they are created but are 
attracted to them during subsequent years, when these 
sites are still contaminated [32]. Thus, the risk of infec-
tion with anthrax in 2009 and 2010 will depend upon car-
cass sites from 2007-2008 and 2008-2009, respectively. 

It should be noted that the carcasses used to derive the 
anthrax risk layers do not represent an exhaustive or ran-
dom record of anthrax-positive zebra carcasses in the 
Etosha region (fewer than 25% of carcasses from zebra 
that have died of anthrax are likely to have been observed 
[39]). Additionally, our map does not account for spring-
bok, elephant, and wildebeest anthrax-positive carcasses. 
Thus, our study is more methodological and illustrative 
than definitive.

Others have created predictions for B. anthracis based 
on ecological niche models (ENMs; e.g., [23, 40, 41]), 
but due to the site-specific nature of the data used, they 
tend to be applicable only in the region for which they are 
built [42]. Despite their specificity, these models do offer 
insight into potential predictor variables for B. anthracis 
persistence and can inform the niche model constructed 
here (Table 2). Because the carcass data used in develop-
ing this particular niche modeling experiment represent 
sites at which anthrax spores were able to persist for 
multiple years, the risk map does not simply serve as a 
predictive map of carcasses. Rather, it relates B. anthracis 
persistence to the soil, bioclimatic, and vegetation pre-
dictors at sites previously occupied by a carcass. Given 
that these locations represent presence-only data, we 
applied Maximum Entropy methods [43] to an initial 
predictor variable set consisting of three general catego-
ries: soil characteristics, bioclimatic variables, and veg-
etation indices (see Additional file  1 for information on 
these variables).

We parameterized our MaxEnt models by first gener-
ating a set of random ‘pseudo-absence’ locations on our 
map—we decided on 500—in proportion to the num-
ber of carcasses observed in each of three seasons for 

Table 1 Summary of the eleven regularized zebra tracks for 
which step-selection functions were developed

Note that individuals AG063 and AG068 had tracks that spanned two anthrax 
seasons, resulting in two separate entries here

Animal ID Number of 
Points

Missing Points Start Date End Date

AG059 4824 5 2009-04-25 2009-06-30

AG061 4824 152 2009-04-25 2009-06-30

AG062 4824 646 2009-04-25 2009-06-30

AG063 4824 7 2009-04-25 2009-06-30

AG068 4824 11 2009-04-25 2009-06-30

AG063 6331 86 2010-02-01 2010-04-30

AG068 10,800 2,072 2010-02-01 2010-08-29

AG252 10,800 39 2010-02-01 2010-08-29

AG253 10,800 739 2010-02-01 2010-12-17

AG255 10,800 28 2010-02-01 2010-08-29

AG256 10,800 2 2010-02-01 2010-08-29
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which we had data to obtain 312, 50, and 138 pseudo-
absence points respectively associated with 2010, 2011, 
and 2012 seasons. The predictor values were extracted 
for each presence and pseudo-absence point accord-
ing to its deposition year. An initial MaxEnt model was 
run on these data and the full candidate predictor set 
using the implementation in the dismo package (ver-
sion 1.1–4; [44]) in R (version 3.4.3; [45]). Following an 
investigation of the variable contributions to this full 
model (generated as a standard output of the maxent 
function), variables exhibiting covariance with another 
predictor were culled such that the variable in the pair 
with the higher contribution to the MaxEnt model was 
maintained and its counterpart eliminated. Finally, 
another MaxEnt model was run on the reduced predic-
tor variable set.

In order to obtain an anthrax risk map for both 2009 
and 2010, the MaxEnt model was projected onto the 
environmental predictor variable sets associated with 
those years (Additional file 3: Figs. S1 and S2). In 2009, 
this meant that the vegetation indices were calculated 
over the period from 2007 to 2009, and for the 2010 
risk map, the vegetation indices were calculated over 
the period between 2008 and 2010. The continuous risk 
layers were directly incorporated into the step selection 
functions described below. For the sake of visualization, 
however, we followed the approach set forth in [23] 
and used three thresholds representing liberal, moder-
ate, and conservative cutoffs to generate a discretized 
version of the risk layers. This enabled clearer delinea-
tion of the geographic range of risk, or pertinent trans-
mission zone (PTZ), but these discrete layers were not 
used for habitat selection modeling.

Behavioral analysis
We used a hidden Markov model (HMM; [48–50]) to 
probabilistically assign one of three different behavioral 
states, interpreted as resting (state 1: step size 100 to 101 , 
lack of directionality), foraging (state 2: step size 101 to 
102 , moderate directionality) and directional movement 
(state 3: step size 102 to 103 , persistent directionality). The 
points that were assigned to the ‘foraging’ and ‘directed 
movement’ states formed the basis of the two reduced 
datasets used for the behaviorally-conditioned step-
selection function described below. Each track was ana-
lysed separately to more accurately reflect the variability 
among individuals and properly parameterize the ani-
mal-specific step-length distributions used in subsequent 
analyses. The parameters governing the step length and 
turning angle distributions of the three behavioral states 
can be seen in Additional file  2:  Tables S1–S11. In sub-
sequent analyses, the means ( µ ) and standard deviations 
( σ ) in these tables are transformed into the more tradi-
tional shape and rate (i.e., the inverse of scale) parameters 
of the gamma distribution according to:

Our three-state model is not meant to capture all of the 
nuance of zebra behavior, but to strike a balance between 
flexibility and interpretability (see [51] for further dis-
cussion). The parameters defining these states provide 
a way for us to infer whether or not the individual had 
likely made a decision to leave a landscape cell defined by 
the 30 m raster resolution of our maps during the relo-
cation sampling period. Specifically, if the mean step 
length of the behavioral state at a location was less than 

shape =
µ2

σ 2
, rate =

µ

σ 2

Table 2 Set of potential predictor variable layers used in creating the anthrax risk map

These predictors were compiled based on their use in similar ecological niche modeling efforts of Bacillus anthracis (see [40] and [23] for more details). Several of these 
variables were eliminated, however, due to collinearity with other, more important, variables in the set. An ‘X’ in the ‘Final Model’ column indicates the inclusion of that 
variable in the final MaxEnt model. Data sources: ∗ [46]; † [47]; ‡ courtesy of the U.S. Geological Survey (https://espa.cr.usgs.gov/)

Environmental variable (units) Predictor name Data source Final Model

Soil pH x 10 in H2O pH SoilGrids∗ X

Soil Organic Carbon Content (g/kg) OC SoilGrids∗ X

Soil Cation Exchange Capacity (cmolc/kg) CEC SoilGrids∗ X

Mean annual temperature (C◦) bio1 WorldClim† X

Annual temperature range (C◦) bio7 WorldClim† X

Annual precipitation (mm) bio12 WorldClim†

Precipitation of the wettest month (mm) bio13 WorldClim† X

Precipitation of the driest month (mm) bio14 WorldClim†

Mean NDVI NDVI Landsat 7 ‡

Maximum NDVI max_ndvi Landsat 7 ‡ X

Minimum NDVI min_ndvi Landsat 7 ‡ X

Range NDVI range_ndvi Landsat 7 ‡ X
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42.4 meters (the diagonal distance across a 30 meter cell), 
then we scored the individual as unlikely  to have made 
a concerted movement decision, and the portion of the 
track assigned to this ‘low-movement’ location would 
be omitted from the analysis. In our case, the movement 
state that we refer to as ‘resting’ was relegated to this cat-
egory and thus, does not appear in the final results pre-
sented here.

Step‑selection function
The step-selection function (SSF) procedure imple-
mented here follows that of Zeller et al. [16] (later used in 
[26] and [52]) with some minor adjustments.

Our SSF method consisted of the following steps: 

1 We fitted a separate Gamma probability distribution 
(but see [16]) to the distribution of step lengths from 
each individual and set a maximum threshold of 97.5 
percentile, as recommended by Zeller et al. in setting 
up our fitted distribution as a step length movement 
kernel. This threshold effectively represented the 
maximum movement range (i.e., radius) of individu-
als at the scale of each 20 minute time step (Table 3).

2 The maximum movement radius so obtained was 
then used to construct an ‘available area’ buffer 
around each ‘used’ point, thereby greatly reducing 
the computational costs associated with including 
cells that fall within the long tail of the gamma dis-
tribution. Unlike Zeller at al. [16], we omitted the 
construction of a separate 30-meter GPS error buffer 
around each ‘used’ point, because the resolution of 
the underlying predictor layers relative to the loca-

tional error of the GPS units rendered this correction 
moot.

3 For each continuous variable, the density func-
tion of the estimated step length distribution was 
applied to weight the value of each cell based on its 
distance from the ‘used’ point. This procedure places 
higher weights on areas closer to the ‘used’ point and 
lower weights on those farther away. Only those cells 
whose center falls within the buffer are considered in 
the calculation of the weighted mean. We then paired 
the weighted mean value, reflecting a summary of the 
‘available’ area, with the values extracted at the ‘used’ 
point. These pairs of predictor value sets form the 
basis of the conditional logistic regression.

4 We fitted the following conditional logistic regression 
selection model (response variable w, predictors x1 
to xn , and selection ratios βi , i = 1, ...n,—βi < 0 indi-
cates selection against the ith predictor variable) 

 [53, 54] so that we could relate the set of values xn 
arising from each ‘used’ area with a response value 
wT in the associated ‘available’ area [55–57], where 
we used T to refer to the year of the particular data 
set used.

5 We included individual ID as a random effect [58, 59] 
variable in our model alongside our fixed effects of 
Greenness ( x1 ), Wetness ( x2) , Road Density ( x3 ), and 
Anthrax Risk ( x4 ). We repeated this analysis sepa-
rately for each of the two seasons, thereby deriving 
w2009 and w2010 as separate step selection functions 
(SSFs). The generation of separate SSFs for 2009 and 
2010 allows us to check consistency across consecu-
tive years.

Conventional SSF approaches overcome much of the 
subjectivity associated with home range delineation 
methods required of traditional resource selection 
function methods [60] by selecting a certain number of 
‘available’ points for each ‘used’ point based on empiri-
cal step length and turning angle distributions [54, 61, 
62]. The approach we take here offers the same benefits 
of directly accounting for temporal autocorrelations 
within movement data. Our method has an additional 
advantage of overcoming the approximation error asso-
ciated with small samples of ‘available’ points [63]. By 
censusing the entire available area, one can estimate the 
categorical variable proportions and continuous vari-
able distributions of predictor values associated with 
a given ‘used’ point, thereby conforming to a context-
dependent methodology [64].

w(x1, ..., xn) = eβ1x1+···+βnxn

Table 3 Radii of the kernels (in meters) used for in producing 
the step-selection functions for each individual

Separate radii were used for the full datasets, the foraging only dataset, and the 
directed movement only datasets

Animal ID Kernel Radius 
(All)

Kernel Radius 
(Foraging)

Kernel 
Radius 
(Directed)

AG059_2009 1131 667 1532

AG061_2009 739 273 1190

AG062_2009 837 240 1148

AG063_2009 985 581 1534

AG068_2009 1183 607 1595

AG063_2010 1256 626 1686

AG068_2010 1236 590 1636

AG252_2010 1012 341 1450

AG253_2010 1101 499 1702

AG255_2010 1056 324 1502

AG256_2010 1014 376 1479
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Results
Anthrax risk map
The MaxEnt anthrax risk maps produced for the 2009 
and 2010 seasons were based on 40 presence points and 
422 background points (after 78 haphazardly distrib-
uted points were removed for missing at least one of 
the environmental predictors; Fig.  1a). The final model 
incorporated a set of nine continuous predictors after 
the elimination of annual precipitation (bio12) and mean 
NDVI, which were highly correlated with precipita-
tion of the wettest month (bio13) and maximum NDVI, 

respectively (see Additional file 2: Tables S12–S14 for the 
covariance matrices in 2010, 2011, and 2012, and Addi-
tional file 2: Table S15 for the variable contributions asso-
ciated with the full model).

The variable importance table indicates that the bio-
climatic and soil characteristics were larger contributors 
than the vegetation indices (Table 4). Mean temperature 
range dominated the model, contributing 73% to the final 
model. Soil organic carbon content was the next highest 
contributor at just over 11%. The vegetation measures 
contributed a total of only 7% to the model, despite being 

Fig. 1 Ecological Niche Model for Anthrax MaxEnt derived maps of suitability for Bacillus anthracis persistence within the region of interest in 
Etosha National Park, Namibia. Panel a illustrates the spatial distribution of soil samples with non-zero concentrations of anthrax recorded one and 
two years following carcass deposition (large black dots) and background sampling points for the MaxEnt algorithm (small grey dots). The grey 
polygon demarcates the Etosha Pan while the red and blue polygons represent the 95% minimum convex polygon (MCP) for the zebra in the study 
during 2009 and 2010, respectively. Panels b and c are the predictive maps of suitability for anthrax spores in 2009 and 2010, respectively, based on 
the MaxEnt model created from the presence and background points in panel a 
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more temporally specific than the other measures (model 
coefficients and associated feature classes emerging from 
the MaxEnt algorithm are available in Additional file  2: 
Table S16).

The final predictive maps for both 2009 and 2010 show 
that the greatest level of risk occurs at the southwest-
ern edge of the Etosha pan (Fig. 1, Panels b and c). The 

geographical range of risk appears to be considerably 
larger during the 2010 season than during the 2009 sea-
son. These differences are likely driven by differences in 
the vegetation layers because the soil characteristic and 
bioclimatic variables are static between the years. To 
examine the qualitative differences in risk between years, 
the three PTZs were mapped and compared (Fig. 2). In 

Fig. 2 Pertinent transmission zones (PTZs) for anthrax Three different thresholds were used to delimit the PTZs: > 10% , > 25% , and > 50% 
probability of suitability, corresponding to a liberal (a, b), moderate (c, d), and conservative (e, f) estimates of the area in which anthrax is likely to 
persist, respectively. The two columns represent the same three thresholds applied to the 2009 season (left column) and 2010 season (right column)
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2009, the area defined as the PTZ, based on our most lib-
eral definition of risk (associated with a suitability value 
of > 0.1), was approximately 730 km2 . The same liberal 
cutoff in 2010 results in a PTZ of over 943 km2 . The mod-
erate threshold (with a suitability value of > 0.25) offers 
a similar impression of the disparity in PTZ size across 
seasons, with 2009 having a PTZ of about 344 km2 and 
2010 having one of over 463 km2 . Finally, the difference 
between anthrax seasons is even more pronounced when 
the most conservative threshold (a suitability value > 
0.5) is applied, with 2009 having a PTZ of just under 77 
km2 and 2010 having a PTZ that is nearly twice as large 
(133 km2 ). The PTZs in 2009 represent 10.4%, 4.9%, and 
1.1% of the total area in the ≈ 7000 km2 region of inter-
est in Etosha National Park for the liberal, moderate, and 
conservative thresholds, respectively. The PTZs in 2010, 
however, represent 13.5%, 6.6%, and 1.9% of the total area 
for the same thresholds.

We note that both risk layers are characterized by a 
diagonal striping pattern that is an artifact of a mal-
function in the scan line detector during the Landsat 7 
mission [65]. Our focus in this case is to demonstrate 
our methods, so we used the Landsat images without 
applying any form of correction. Despite the limitations 
described, the environmental layers upon which the risk 
layer is built represent the best available data.

Step‑selection function
To verify the efficacy of the step-selection function 
method we randomly generated two rasters from the 
largest dataset (consisting of all movement points in 
2010). This allowed us to verify that no methodologi-
cal artifacts, including sample size, were artificially 

inflating the significance of various predictors. These 
results, which demonstrated that zebra did not exhibit 
a meaningful selection of the random layers, are pre-
sented in Additional file 2: Table S17.

For the sake of comparison, we first present the 
results of the analysis conducted using all of the move-
ment points, irrespective of the behavioral state, fol-
lowed by the results emerging from the analysis that 
explicitly incorporates behavior. In the latter case, we 
distinguished between the foraging and the directed 
movement state to determine how selection patterns 
compare across behavioral modes as well as across 
years (Fig. 3; Additional file 2: Table S18). Figure 4 pro-
vides a visual representation of the step selection func-
tion. This is a naïve mapping approach that should be 
interpreted somewhat differently from broader scale 
predictive outputs such as species distribution models: 
SSF heatmaps reflect likely past space use rather than 
predicted future use.

Comparing the 2009 and 2010 anthrax season SSFs 
suggest the following consistent trends. Wetness was 
the predictor with the largest effect on selection and 
was highly significant in terms of wetness avoidance 
both years (2009, βW =-0.52; p < 0.001 ; 2010, βW =

-0.85; p < 0.001 ). In both years, individuals appeared to 
be slightly, though significantly, attracted to areas with 
greater Road Density (2009, βRD = 0.01 , p = 0.04 ; 2010, 
βRD = 0.03 , p < 0.001 ). Avoidance of areas with rela-
tively high anthrax risk was consistent across years, and 
was close to significant in 2009 ( βAR = −0.02 , p = 0.06 ) 
and highly significant ( βAR = −0.06 ; p < 0.001 ) in 2010. 
The only pattern that was not maintained across seasons 
was the role of Greenness. In 2009, Greenness was not a 
significant factor in patch selection ( p = 0.86 ), though it 
was highly significant and second only in magnitude to 
Wetness in 2010 ( βG = 0.36 , p < 0.001).

When the dataset is parsed into different behavioral 
states, the results offer a slightly different picture, thereby 
providing some insight into the factors that animals 
consider when foraging rather than moving in a more 
directed manner. When considering only the foraging 
state, Wetness was no longer as consistent a predictor 
of habitat selection; being a highly significant negative 
factor in 2010 ( βW = −0.30 ; p < 0.001 ), and a signifi-
cant positive factor in 2009 ( βW = 0.23 ; p < 0.001 ). In 
contrast, Greenness was the factor with the greatest 
impact on foraging phase movement decisions in 2010 
( βG = 0.43 ; p < 0.001 ), but was not significant in 2009 
( p = 0.22 ). Unlike the all-points analyses, the role of 
Road Density was negligible in both 2009 ( p = 0.61 ) and 
2010 ( p = 0.75 ) during foraging. Importantly, in both 
years, zebra appear to consistently avoid the areas of 
highest risk of exposure to anthrax. Though the effect is 

Table 4 Variable contribution and importance results from the 
final MaxEnt model of Bacillus anthracis persistence, built on the 
reduced environmental predictor set following the elimination of 
annual precipitation (bio12) and mean_ndvi due to covariance

Variable Name Percent 
contribution

Permutation 
importance

Mean temperature range bio7 73 80

Soil Organic Carbon 
Content

OC 11.2 2.6

Precipitation of the wettest 
month

bio13 6.5 7.1

Range of NDVI range_ndvi 4.7 2.3

Maximum NDVI max_ndvi 2 1.6

Mean annual temperature bio1 1.2 1.5

Soil Cation Exchange 
Efficiency

CEC 0.6 2.1

Soil pH pH 0.5 0.5

Minimum NDVI min_ndvi 0.3 2.3
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slightly stronger in 2009 ( βAR = −0.11 , p < 0.001 ) than 
in 2010 ( βAR = −0.06 , p < 0.001 ), anthrax area avoid-
ance behavior is highly significant across both seasons 
when animals are foraging.

Interrogating the selection patterns that emerge from 
an analysis of the directed movement points provides 
additional clarity compared with considering the forag-
ing points alone. When animals move in a directed man-
ner, with longer steps lengths and relatively little variance 
in their heading, they seem to actively avoid areas with 
high Wetness. The effect was highly significant in both 
2009 ( βW = −2.17 , p < 0.001 ) and 2010 ( βW = −2.19 , 

p < 0.001 ). It was this large effect that likely drove the 
relatively high avoidance patterns when all of the points 
were analysed. There were several factors that exhibited 
notably different effects during the directed movement 
state than during the foraging state. In 2009, the effect of 
Greenness was negligible during the foraging state, but 
animals appeared to actively avoid areas of high Green-
ness during the directed movement state ( βG = −0.54 , 
p < 0.001 ). The oppositional trend was repeated in 
2010, where foraging animals demonstrated a signifi-
cant preference for higher Greenness, but animals mov-
ing in a directed manner seemed ambivalent to the level 

Fig. 3 Results of the conditional logistic mixed effects models The bars represent the exp(coef ) for each of the variables. Thus, values above 
one represent positive selection (preference) and those below one represent negative selection (avoidance). The first row displays the results of 
analyses when applied to all of the movement points (n = 22,949 in 2009 and n = 56,495 in 2010). The middle row shows results when only the 
foraging points (n = 11,733 in 2009 and n = 27,898 in 2010) are considered. The bottom row reflects the results when only the directed movement 
points (n = 4,381 in 2009 andn = 11,486 in 2010) are included. Each bar represents the normalized model coefficients (via exponentiation) with 
standard error bars. In addition, indicators of statistical significance are plotted above each bar, with a . reflecting p < 0.1 , * signifying p < 0.05 , ** 
indicating p < 0.01 , and *** to denote factors that are significant below a threshold of p = 0.001
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of Greenness ( p = 0.80 ). Similarly, Road Density was a 
significant predictor of selection during directed move-
ment in both 2009 ( βRD = 0.04 , p = 0.001 ) and 2010 
( βW = 0.07 , p < 0.001 ), where animals actively selected 
to be in areas with higher Road Density, but the factor 
did not appear to significantly affect movement deci-
sions during the foraging state. A possible explanation 

for this difference is that roads may facilitate directed 
movement by eliminating potential barriers, making 
them more attractive for longer distance ‘steps’. How-
ever, the disparity between the behavioral states was 
perhaps most notable with regard to role of disease risk 
in movement decisions. When animals were moving in 
a directed manner, they consistently selected areas that 

Fig. 4 Derived step‑selection surface Step selection functions within the region of interest in Etosha National Park, Namibia. Panels a and b 
illustrate the selection functions for anthrax seasons 2009 and 2010, respectively, when all of the recorded movement points are used. Panels c 
and d represent the selection functions during the same time periods, but using only the points during which the individual was in the foraging 
behavioral state. Panels e and f illustrate the selection surfaces when the animals were in the directed movement state in 2009 and 2010
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correlated with greater risk of exposure, whereas animals 
tended to actively avoid such high risk areas when they 
were foraging. This was the case in 2009 ( βdirect

AR = 0.13 , 
p = 0.003 versus β forage

AR = −0.11 , p < 0.001 ) and in 
2010 ( βdirect

AR = 0.09 , p < 0.001 versus β forage
AR = −0.06 , 

p < 0.001).

Discussion
The selection functions revealed an interesting, and 
somewhat unexpected, dynamic with regard to the 
behaviorally-contingent space use patterns of the zebra. 
An analysis that neglected the internal state of the ani-
mal by analyzing the full track would likely overlook the 
contrasting selection patterns that emerged in both 2009 
and 2010 when the behavioral state was used to guide the 
analysis. In both years examined here, the zebra exhibit 
apparent avoidance (indicated by a negative selection 
coefficient) of high-risk areas as defined in our risk map 
of Bacillus anthracis persistence (Fig.  1) when they are 
in the foraging state, and a pattern of attraction (indi-
cated by a positive selection coefficient) to these areas 
of high risk when they are in the directed movement 
state. Importantly, this does not necessarily suggest that 
the animals are aware of anthrax risk nor that they are 
actively choosing a strategy that reduces their likelihood 
of exposure. In fact, the observed trend may very well be 
an artifact of other features of the landscape that were 
not captured by the predictor variables used in the SSF.

It is also important to note that these general trends do 
not indicate that animals never forage in areas with some 
risk of exposure; it merely implies that animals exhibit a 
statistically meaningful preference for areas with lower 
over higher risk while in the foraging state. Similarly, 
zebra will, on occasion, move in a directed manner out-
side of high risk areas, but there exists a meaningful pref-
erence such that they are more likely to select for areas of 
high versus low risk when they are in the directed move-
ment state.

The association with directed movements occurring in 
the high-risk area may suggest that exposure in this area 
is less than it could be if foraging behavior occurred here 
more often. The reduction in foraging behavior may be 
due to overgrazing depleting the desirable short-grass 
resource in this area, forcing animals to forage else-
where [29, 35, 66]. An alternative interpretation of this 
association with directed movements could be evidence 
of increased anthrax mortality occurring during the 
directed movement state. There is a time lag between 
host exposure and anthrax mortality, estimated to be sev-
eral days [67]. Zebras in this system move 13 to 16 kilo-
meters per day on average (depending on the season and 
whether they are members of a migratory or non-migra-
tory herd; [30]), blurring the lines between where higher 

risk behaviors occur and where disease mortalities are 
detected. Although little is known about post-exposure 
behaviors in wildlife, anthrax infected hippos in Tanza-
nia showed no changes in their movement patterns in the 
days leading up to mortality [68].

It is beyond the scope of this methodologically-focused 
discussion, however, to establish the mechanisms under-
lying the patterns observed here. Rather, our intention 
is to draw attention to the generally contradictory selec-
tion patterns that emerge during two distinct behavioral 
states, which are largely obscured when behavioral state 
is ignored. Even so, we emphasize below a number of 
caveats that are important to consider when conducting 
and interpreting analyses following the general structure 
outlined here. We also note that, though the focus of our 
discussion has been on the avoidance of pathogens that 
are transmitted from an environmental reservoir, some 
of the ideas we present can be applied to other types of 
transmission [21], such as vector systems (e.g., tick or 
mosquito borne diseases) or direct transmission between 
live individuals (e.g., bovine tuberculosis). In such cases 
it may actually be easier to detect avoidance behavior in 
movement trajectories because the entities being avoided 
may be directly observable (e.g., tracking the population 
densities of vectors or infected heterospecifics).

The value of this analytical framework lies in the abil-
ity—and need—to parse continuous movement tracks 
into relevant and separable behavioral states. The selec-
tion of a particular analytical method to classify portions 
of the movement track into the canonical activity modes 
(CAMs; [3, 69]) or behavioral states can introduce uncer-
tainty from the outset. For this study, we have chosen the 
HMM approach that accounts for some of this uncer-
tainty by probabilistically assigning each point to a given 
state. However, the models that emerge from this method 
are highly dependent on user inputs, including an a priori 
decision regarding the number of states to which points 
can be assigned. This is an important consideration when 
researchers intend to incorporate behavior into models 
of habitat selection.

Recently, telemetry devices have been fitted with aux-
iliary sensors, such as accelerometers [4, 70], that might 
offer additional clarity to researchers wishing to parse 
movement tracks. Similarly, several new tracking devices 
directly account for the movement mode of an animal by 
altering the positional fix rate based on the current speed 
of movement, offering classification of steps without 
additional analyses [20]. However, it is unclear exactly 
what the ramifications of misclassification would be, and 
the identification of these effects will be difficult without 
definitive knowledge of the actual behavioral states of an 
animal through time.
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The pathogen persistence map, upon which our inter-
pretation of habitat usage patterns is based, suffered from 
data limitations. An essential component to modeling 
disease risk for an environmentally transmitted disease 
is a good understanding of the heterogeneity in patho-
gen deposition into the environment from infected hosts, 
and variation in pathogen survival in different habitats or 
environmental conditions. In theory, with enough relia-
ble data, the method proposed here would enable a direct 
mapping of suitability for spore persistence, and thus, 
exposure risk, as opposed to mapping some proxy, such 
as habitat preferences of animals weakened by anthrax 
infection.

Despite building our analysis on one of the most exten-
sive datasets on B. anthracis persistence available, this 
dataset is of a relatively small spatial extent compared to 
the areas used by hosts, with few of the monitored sites 
showing low or no survival of the pathogen, which may 
affect the inferences made in this study. Results from a 
reciprocal transplant experiment of B. anthracis spore 
persistence in ENP soils suggest that soils from across 
the park are suitable for spore persistence [71], thus our 
pseudo-absences may not accurately reflect an absence of 
the pathogen. Although no small lift to acquire, a detailed 
pathogen risk layer is important for evaluating disease 
transmission risk, especially one that combines both a 
large spatial extent and sufficient detail at the small scale 
where hosts encounter individual pathogen reservoirs. 
Because the risk map itself was not the primary focus of 
this effort, we decided to expand the range over which we 
placed our pseudo-absence points to more closely match 
the range of our movement data rather than the pathogen 
data. Ideally, a more representative area would be sam-
pled by the pseudo-absence points or a much broader 
area would be surveyed to build the presence dataset.

Another potential source of uncertainty in the interpre-
tation of such an analysis is the specific scales at which 
the data were collected and subsequently analysed. The 
locally infectious zone (LIZ; [37]) generated by a zebra 
carcass is, on average, only 2-3 meters in diameter. 
Thus, it is not especially surprising that an analysis at a 
30 meter resolution could miss some of the finer-scale 
dynamics. At this scale, the signature of a LIZ site is likely 
overwhelmed by the averaging of the characteristics of a 
cell (the LIZ likely represents only about one-tenth of the 
area of a cell at this scale, though this depends on the spe-
cies of the animal that succumbed at that location). Thus, 
at the scale of this analysis, animals may, in fact, select for 
areas that present lower risk of exposure to a pathogen.

Avoidance behavior has been noted in other species [72, 
73], and has given rise to the concept of the ‘landscape of 
disgust’ [74]. Although whether or not hosts can detect 
and avoid bacterial pathogens such as B. anthracis in the 

environment, beyond relying on indirect cues such as the 
carcass, is unknown. Evidence from an anthrax-endemic 
system in Montana, USA, where bison and elk graze near 
carcasses soon after death suggests that not all species 
demonstrate behaviors indicative of ‘disgust’ [75]. If an 
animal ends up in a high risk cell, they might be attracted 
to the LIZ site within that cell due to vegetation green-up 
at the carcass site [32]. Thus, an overall avoidance pattern 
may be observed across the landscape, with attraction at 
the sub-cell scale. This possibility implies a very important 
point about habitat selection analyses that are frequently 
conducted at the finest scale allowed by the environmen-
tal data, as opposed to the most meaningful scale from a 
biological perspective. It should also be noted, however, 
that to make use of such fine-scale environmental data, 
the temporal resolution of the movement tracks would 
also likely need to be finer, perhaps on the order of 1 min-
ute per fix. At the time that these data were collected in 
2009 and 2010, this technology was not widely available, 
but recent advancements in GPS devices make such fine-
scale movement data more readily collectable. Even so, a 
trade-off still exists between tracking period and fix rate, 
so careful consideration of the primary goals of the study 
are required [76].

Conclusion
In conclusion, we applied a somewhat unconventional 
approach to our habitat selection modeling. The methods 
outlined by [26] offer an alternative that overcomes sev-
eral of the shortcomings of conventional resource- and 
step-selection functions, and arguably reflects the selec-
tion process in a more biologically accurate fashion. At 
the same time, the approach foregoes some of the estab-
lished statistical characteristics of conventional SSFs [25] 
by evaluating a summary of all of the resources theoreti-
cally reachable by the individual. The effects of the SSF 
approach were not explicitly compared to more conven-
tional approaches here but warrant further investigation.

The explicit consideration of particular behavioral 
states in habitat selection studies can offer important 
insights, especially in systems with environmentally-
transmitted pathogens. The unique biology of these 
pathogens enables them to persist in reservoirs outside 
of hosts for relatively long periods of time. Anthrax 
spores, for example, may remain viable in the soil in 
Etosha for at least seven years [33]; it is possible that 
they can persist even longer in systems with more vege-
tation cover, potentially giving rise to episodic infection 
dynamics [22]. Where environmental persistence is 
possible, our ability to predict the presence of the path-
ogen is directly related to the dependence of the patho-
gen on particular environmental factors. Broadly, B. 
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anthracis exhibits a dependence on soil with a slightly 
alkaline pH, relatively high organic matter, and high 
calcium content [77]. The availability of these remotely 
sensed data makes it feasible to predict the potential 
distribution of the pathogen, and anthrax risk, within a 
niche modeling framework.

Though other disease systems, including those char-
acterized by transmission via environmental reser-
voirs, might not involve a particular behavioral state 
that exhibits a definitively higher level of vulnerability, 
the consideration of behavior could be important for 
judging other epidemiological processes, such as con-
tact or succumbing to infection [6]. In the case of the 
former, particular behavioral modes might result in 
shifting selection patterns that lead to large aggrega-
tions of individuals, thereby placing animals at a higher 
risk of contacting an infectious conspecific [78]. When 
investigating the infection process itself, novel selec-
tion patterns may be induced by infection with a par-
asite or pathogen, and these shifts might be apparent 
in a movement track [79, 80]. The growing availability 
of fine-scale GPS data and the growing set of analyti-
cal methods to infer behavior from such data makes 
the direct incorporation of behavior an important and 
exciting avenue for future exploration.
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