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Abstract 

Background: Biologging now allows detailed recording of animal movement, thus informing behavioural ecology 
in ways unthinkable just a few years ago. In particular, combining GPS and accelerometry allows spatially explicit 
tracking of various behaviours, including predation events in large terrestrial mammalian predators. Specifically, iden‑
tification of location clusters resulting from prey handling allows efficient location of killing events. For small preda‑
tors with short prey handling times, however, identifying predation events through technology remains unresolved. 
We propose that a promising avenue emerges when specific foraging behaviours generate diagnostic acceleration 
patterns. One such example is the caching behaviour of the arctic fox (Vulpes lagopus), an active hunting predator 
strongly relying on food storage when living in proximity to bird colonies.

Methods: We equipped 16 Arctic foxes from Bylot Island (Nunavut, Canada) with GPS and accelerometers, yield‑
ing 23 fox‑summers of movement data. Accelerometers recorded tri‑axial acceleration at 50 Hz while we obtained 
a sample of simultaneous video recordings of fox behaviour. Multiple supervised machine learning algorithms were 
tested to classify accelerometry data into 4 behaviours: motionless, running, walking and digging, the latter being 
associated with food caching. Finally, we assessed the spatio‑temporal concordance of fox digging and greater snow 
goose (Anser caerulescens antlanticus) nesting, to test the ecological relevance of our behavioural classification in a 
well‑known study system dominated by top‑down trophic interactions.

Results: The random forest model yielded the best behavioural classification, with accuracies for each behaviour 
over 96%. Overall, arctic foxes spent 49% of the time motionless, 34% running, 9% walking, and 8% digging. The 
probability of digging increased with goose nest density and this result held during both goose egg incubation and 
brooding periods.

Conclusions: Accelerometry combined with GPS allowed us to track across space and time a critical foraging behav‑
iour from a small active hunting predator, informing on spatio‑temporal distribution of predation risk in an Arctic 
vertebrate community. Our study opens new possibilities for assessing the foraging behaviour of terrestrial predators, 
a key step to disentangle the subtle mechanisms structuring many predator–prey interactions and trophic networks.

Keywords: Acquisition rate, Activity budget, Behavioural classification, Biologging, Food caching, Hoarding, 
Predation, Predator–prey interactions, Random forest, Supervised machine learning
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Background
A critical question of predator–prey dynamics is when 
and where do predators catch prey. However, most pred-
ators are secretive, complicating detailed assessments of 
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their hunting strategies. Recent technology may solve 
this problem by revealing the behaviour of even the most 
cryptic species, allowing important progress in behav-
ioural and community ecology [1–3].

With variable success, high precision GPS and accel-
erometers have been used to identify predation events, 
thus informing on the timing and location of kills as 
well as prey acquisition rate, a key metric to understand 
predator–prey relationships [4, 5]. Recently, preda-
tion events by seabirds [6, 7], fishes [8], marine [9, 10] 
and large terrestrial mammals [11, 12] were identified 
through biologging. In large terrestrial mammals, killing 
events of large prey can be identified through the clus-
ters of GPS locations resulting from prey handling, which 
includes prey consumption and sometimes food caching 
[13–15]. Although this approach, which often necessi-
tates field confirmation of kills, works for large predators, 
it depends on long prey handling times (and thus large 
prey sizes) [12, 16] matched with adequate GPS fix fre-
quency [13, 14].

Accelerometry can inform the predator’s behavioural 
state and thus confirm a killing event after a cluster of 
GPS locations is identified [12]. Indeed, statistical tools 
like supervised machine learning can identify behav-
ioural states (e.g. flying, travelling, resting, foraging) from 
tri-axial acceleration measurements [17, 18]. Further-
more, accelerometry may also be used to directly identify 
killing events of ambush predators for which killing of 
large prey involves stalking and high acceleration attacks 
[11, 19, 20]. Success of accelerometry in identifying pre-
dation events still depends on many factors like sampling 
regime, predator’s hunting strategy, predator and prey 
body sizes, and prey handling time. This explains why 
most accelerometry-based studies identifying preda-
tion events by terrestrial mammals are restricted to large 
ambush predators feeding on large prey.

Using biologging to study hunting behaviour of small 
active hunting predators feeding on small prey and 
requiring short handling times cannot rest on the iden-
tification of clustered locations. Still, studying their hunt-
ing behaviour is critical to better understand trophic 
networks. Detailed behavioural classification obtained 
from accelerometry [21, 22] may offer avenues for pro-
gress, provided the foraging behaviour of the stud-
ied species contains diagnostic acceleration patterns. 
For example, the fast and sharp movements of foraging 
razorbills (Alca torda) and common guillemots (Uria 
aalge) allowed researchers to quantify prey pursuit and 
catching through accelerometry classification [21]. Many 
other predators perform unique behavioural sequences 
potentially providing acceleration signatures of for-
aging events. Food caching (e.g. [23–25]) is one such 
sequence, as observed in many canids, which are active 

hunting predators storing food for later consumption 
[26]. Canid caching behaviour generally follows a distinc-
tive sequence of food carrying, digging with forepaws, 
tamping with muzzle to press food into the soil, and head 
scooping to cover food with substrate [27].

We tested the potential of accelerometry to inform the 
hunting behaviour of an active hunting predator with 
short prey handling times. We did so using the arctic fox 
(Vulpes lagopus) as study model, since this small canid 
(ca. 2.5 kg) is a key predator over its circumpolar range, 
where it has been thoroughly studied [28, 29] and is well 
known to cache food [30, 31]. Furthermore, predation by 
arctic foxes generates both important top-down effects 
on prey populations [32] and predator-mediated inter-
actions among prey species [33–35], thus increasing the 
need to understand how arctic foxes’ hunting behaviour 
generates a predation risk landscape [36]. Due to harsh 
climatic conditions and the pulsed nature of rodent pop-
ulations and migratory birds in many Arctic systems, 
arctic foxes highly depend on food caches during periods 
of food scarcities such as the winter season [30, 37, 38]. 
On Bylot Island (Nunavut, Canada), which is home to a 
large greater snow goose (Anser caerulescens antlanticus) 
colony composed of > 20,000 nesting pairs [39], arctic fox 
summer diet is primarily composed of lemmings (Lem-
mus trimucronatus and Dicrostonyx groenlandicus) and 
goose eggs [30, 32, 39]. They can cache up to 90% of the 
goose eggs they collect [30]. They can also cache ca. 30% 
of collected goose goslings and lemmings [30]. The cach-
ing rate of eggs collected from goose nests declines from 
laying to hatching, but foxes recache ca. 60% of the goose 
eggs recovered from initial caches [30, 31]. Food cach-
ing thus represents a critical dimension of the foraging 
ecology of this predator. Given the stereotyped nature of 
food caching behaviour in canids, this behaviour could 
generate a spatially and temporally explicit signature of 
foraging events in individuals equipped with GPS and 
accelerometers.

Our first objective was to develop an algorithm allow-
ing the behavioural classification of arctic fox acceler-
ometry data and identifying prey caching events. Using 
in  situ video calibration, we studied fox movements 
during two consecutive goose breeding seasons. Lem-
ming density was low to moderate, thus most cached 
prey were goose eggs (see “Methods” section  for 
details). Our second objective was to assess whether 
fox digging events (the most conspicuous behaviour 
involved in food caching) and greater snow goose nest-
ing were spatially and temporally congruent, as a way 
to test the ecological relevance of our behavioural clas-
sification. We predicted that digging should occur more 
frequently where nest density is highest (P1), digging 
should occur less frequently after egg hatching (P2), 
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as eggs become goslings that gradually disperse, and 
the spatial correlation between digging frequency and 
goose nest density should hold even after eggs have 
hatched (P3), since foxes recover previously cached 
eggs for consumption or recaching in potentially safer 
sites [30, 31]. Lastly, we discuss the potential to gain 
information on prey acquisition rates of an active hunt-
ing predator from the behavioural classification of 
accelerometry data.

Methods
Study system
We worked in May–July 2018–2019 in the southwest 
plain of Bylot Island (72°53′ N, 79°54′ W), in Sirmilik 
National Park of Canada, Nunavut. The ecosystem is 
characterised primarily by mesic tundra and polygonal 
wetlands [40]. Arctic foxes use dens to rear young and 
share a territory with their mating partner [41]. In 2018 
and 2019, there were 115 fox dens in the study area and 
all were georeferenced. On Bylot, arctic foxes rely mostly 
on small prey, such as lemmings (40–50 g), which show 
important annual density fluctuations [42]. Lemming 
abundance was low (0.02 lemmings/km2) in 2018 and 
moderate (137 lemmings/km2) in 2019 as determined 
by capture-recapture methods [35, 43]. Foxes also col-
lect snow goose eggs (100–150  g [37]) during the nest-
ing period for immediate consumption or storage, as 
well as goslings after hatching [39]. The goose incubation 
period lasts 23  days from mid-June to early July, after 
which goose families disperse. Predation on goose nests 
by arctic foxes is greater when lemming abundance is low 
[33, 39, 44], as they then highly depend on this resource 
for reproduction [45]. Notably, from an isotopic analy-
sis, Giroux et al. [45] found that geese represented up to 
97% of arctic fox cubs’ diet, depending on lemming abun-
dance and distance from the center of the goose colony. 
Furthermore, based on 363 h of observations inside the 
goose colony from June 8 to July 14 during a year of mod-
erate lemming abundance, 75% of prey collected by foxes 
were goose eggs, 14% were lemmings and 11% were gos-
lings [30].

Arctic foxes seem to cache food items individually 
[38], although more evidence is required on this matter 
regarding the smallest prey. Using radio-collared artificial 
eggs, Careau et al. [30] found that eggs were cached 85 m 
(median) from the nest. Median hoarding times (includ-
ing carrying and caching times) are ca. 100 s for eggs and 
ca. 60 s for goslings and lemmings [30]. Foxes also oppor-
tunistically prey upon nests of other ground nesting birds 
such as shorebirds, passerines, and ducks, and they are 
their main nest predator [46, 47]. A simplified food web 
of the study system is available in Duchesne et al. [35].

Fox captures, movement tracking and video observations
We captured 16 foxes using Softcatch #1 padded leghold 
traps (Oneida Victor Inc. Ltd., Cleveland, OH, USA), for 
a total of 23 fox-summers of movement data. Fox sex was 
determined at capture and reproductive status (yes/no) 
was based on whether automated cameras recorded cubs 
at the individual’s den [48]. Each fox was marked with 
coloured ear tags allowing identification at a distance, 
and was fitted with a GPS-accelerometer collar (95  g, 
ca. 4% of body mass; Radio Tag-14, Milsar, Romania) 
equipped with rechargeable batteries, a solar panel, and 
UHF transmission allowing remote data download. We 
programmed collars to collect a GPS fix every 4 min and 
a 30-s accelerometry burst every 4.5  min (we uninten-
tionally set a 4-min rather than 3.5-min break between 
bursts). We collected triaxial accelerometry at 50  Hz 
on the vertical (heave), lateral (sway) and longitudinal 
(surge) axes. Additional file 1: Table S1 describes sample 
sizes of accelerometry data for each fox and year consid-
ered in our study. After excluding data collected within 
two days of capture, we obtained 157,276 bursts totaling 
4,718,280 s of accelerometry, and collected 451,895 GPS 
locations (Fig. 1A).

We videotaped collared foxes at each encounter during 
June and July and managed to film 15 of the 16 foxes. We 
collected 2.42 h of video (45 observations of 0.5–17 min) 
in 2018 and 6.48 h (59 observations of 1–47 min) in 2019 
(Fig. 1A). We filmed a handheld GPS at the end of each 
video observation to allow post-synchronisation of video 
and accelerometry sequences.

Objective 1: Behavioural classification from accelerometry 
data
Training dataset preparation
We first identified temporal overlaps between video and 
accelerometry sequences. To do so, we synchronised 
video times with GPS satellite time filmed at the end of 
the observation, using Blender video editing software 
(version 2.82.7 [49]). We then associated video observa-
tions to corresponding sequences of accelerometry data 
in R software (version 3.6.1 [50]). This yielded 3772 s of 
video (from 12 foxes, both years combined) that were 
concurrent with accelerometry data (Fig. 1B1).

We then used BORIS software (version 7.9.7 [51]) 
to annotate the video observations identified above, 
using the detailed ethogram from Table  S2 in Addi-
tional file 1. We noted the start and end times of each 
behaviour. Rare behaviours were ignored, and similar 
behaviours were grouped (Additional file  1: Table  S2), 
yielding 4 behaviour categories: running, walking, dig-
ging and motionless (Table  1; Fig.  1). While running, 
walking, and motionless events are readily identified 
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in canids [52], digging is more context-specific. In all 
digging events, the fox had its head close to the ground 
and was handling a food item (Fig. 2), mostly digging, 
usually tamping and scooping, and sometimes eating. 
The function of behavioural events grouped as digging 
could be identified on video observations as egg cach-
ing (44%), egg recovering (15%), or eating or recovering 
an unidentified food item from a ground cache (41%; 

Additional file  1: Table  S2). Thus, during our observa-
tions, at least 59% of digging events involved a goose 
egg, and foxes were never seen handling a prey type 
other than a goose egg, suggesting that much more 
than 59% of digging events involved a goose egg. Movie 
clips are included as Additional file 2 to illustrate run-
ning, walking, digging and motionless behaviours as 
observed in arctic foxes from Bylot Island.

Fig. 1 Methodological workflow for the behavioural classification of accelerometry data and assessment of activity budget (objective 1, steps A–E), 
and the spatio‑temporal distribution of digging events (objective 2, steps F–G) in arctic fox from Bylot Island (Nunavut, Canada). The software used 
for data handling and analysis are indicated in dark green below each step
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We could successfully identify fox behaviour in 2400 
(63.6%) of the 3772 s of video observations that were con-
current with accelerometry data (Fig. 1B2). We prepared 

our training dataset by partitioning these data into 3-s 
sequences that each contained a single, uninterrupted 
behaviour (thus excluding brief sequences of behaviours 

Table 1 Description and function of four arctic fox behaviours used for accelerometry classification, and number of 3‑s sequences (N) 
obtained for each behaviour and used for training behavioural classification algorithms

Behaviour Description Function N

Running Fast and long‑distance movement Travel between habitat patches 146

Walking Slow movement of short duration Transition between running and another behaviour 126

Digging Head down, digging, usually 
tamping and scooping, sometimes 
eating. Individual remains at a 
fixed location

Cache or recovery of a food item 49

Motionless Standing, sitting or lying down 
(most common), with head up or 
down

Resting or vigilance 339

Fig. 2 Left column: Three‑second acceleration bursts on the lateral (orange), longitudinal (blue), and vertical (black) axes, for the running, walking, 
digging and motionless behaviour categories considered in this study. Right column: Illustration of each behaviour category. Note the various molt 
stages observed in these arctic foxes photographed in May–July on Bylot Island (Nunavut, Canada)
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such as standing between two running sequences). This 
yielded 660 sequences representing 1980  s of acceler-
ometry (Table 1; Fig. 1B3). A training dataset composed 
of 5-s sequences yielded similar model accuracies but 
lower precisions, so we used sequences of 3 s to increase 
observation sample size and precision. Figure 2 presents 
an example of a 3-s sequence of acceleration for each 
behaviour.

Behavioural classification algorithms
We used the open-access web application AcceleRater 
[53] to train behavioural classification algorithms based 
on our training dataset (Fig. 1C). We computed 52 sum-
mary statistics [53] for each of the 660 3-s sequences of 
the training dataset. Averages and standard deviations of 
the 52 summary statistics obtained for training sequences 
are presented for each behaviour category in Additional 
file 1: Table S3, and among-behaviour differences in the 
summary statistics are also illustrated in Additional file 1: 
Figs. A–R.

We trained 8 algorithms, including a three nearest 
neighbours algorithm, a linear support-vector machine, a 
radial basis function kernel SVM, a decision tree, a ran-
dom forest, a gaussian naïve Bayes, a linear discriminant 
analysis and an artificial neural network [17, 53, 54]. We 
used a five-fold cross-validation method to assess train-
ing accuracy, precision and recall for each behaviour. 
This method splits the dataset into 5 equal parts contain-
ing 20% of the dataset, uses 4 parts for training and the 
remaining one for validation. The cross-validation was 
repeated 5 times, with each part used once for validation.

To identify which algorithm performed the best at clas-
sifying our data, a confusion matrix was built in AcceleR-
ater for each algorithm to represent correct and incorrect 
classifications, and count true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN). 
Accuracy, precision and recall were calculated for each 
behaviour category to assess classification performance. 
Accuracy is the proportion of correct classifications 
either into or out of a given behaviour category:

Precision is the proportion of classifications into a 
given behaviour category that were correct. Higher preci-
sion indicates fewer false positives:

Recall is the proportion of instances of a behaviour 
classified into the correct category. Higher recall indi-
cates fewer false negatives:

accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

Lastly, we used AcceleRater to annotate our complete 
accelerometry dataset (157,276 30-s bursts) previously 
partitioned into 3-s sequences in R (Fig.  1D). We used 
the random forest algorithm which showed the great-
est performance for all metrics (see “Results” section). 
We then determined fox activity budgets by calculating 
proportions of the dataset associated to each behaviour 
(Fig. 1E).

Objective 2: Spatio‑temporal distribution of digging 
behaviour
Data preparation
To assess the spatio-temporal distribution of digging 
in relation to nesting goose density and phenology, 
each 30-s accelerometry burst of the complete dataset 
(157,276 bursts) was associated to the closest GPS loca-
tion, provided the time stamp of the GPS location was 
within 30 s of the start or end of the burst, which was the 
case for 42.3% (66,475) of the bursts (Fig. 1F1). We then 
associated to each burst location the local nesting goose 
density (individual geese/ha), a proxy for nest density 
that was estimated from detailed field surveys performed 
in 2018 and 2019 [40]. We also determined whether each 
burst occurred during the goose incubation or brood-
ing (when goslings disperse) period, based on starting 
and ending dates of incubation and brooding for each 
year (incubation start dates: June 19 in 2018, June 12 in 
2019; brooding start dates: July 12 in 2018, July 5 in 2019; 
brooding end dates: August 3 in 2018, July 27 in 2019), 
as provided in Grenier-Potvin et  al. [40]. In addition, 
we calculated for each burst the distance to the nearest 
den (m). We then excluded from analyses 11,041 bursts 
(Fig. 1F2) that (1) were located outside of the snow goose 
density map (5563 bursts), (2) were collected before the 
beginning of the goose nesting period (2359 bursts; no 
bursts were collected after goose nesting), or (3) occurred 
within 50 m of a den, as digging may then be associated 
with den maintenance rather than foraging (3119 bursts). 
This data preparation thus allowed us to assess whether 
digging events occurred during each of 55,434 30-s 
bursts (35.2% of the complete dataset).

Statistical analysis
We used a generalised linear mixed model (R package 
lme4 [55]) with a binomial distribution and a cloglog-
link function to predict the probability that a fox engaged 
in digging during a 30-s acceleration burst (0 = no dig-
ging event, 1 =  ≥ 1 digging event), with respect to nest-
ing goose density (P1), goose reproduction period (P2) 
and their interaction (P3), all included as fixed effects 

recall =
TP

TP + FN



Page 7 of 12Clermont et al. Movement Ecology            (2021) 9:58  

(Fig. 1G). We also included sex, reproductive status, and 
their interaction as fixed effects, as these factors may 
affect fox behaviour and thus represent confounding 
variables. Fox ID and year were fitted as random effects. 
Nesting goose density was centered and standardised to 
facilitate interpretation of model estimates [56]. We used 
as reference values in the model period = incubation, 
sex = male, and reproductive status = reproductive.

Results
Behavioural classification of accelerometry data
The random forest model yielded the greatest average 
accuracy, precision and recall values compared to other 
algorithms, and it provided a good classification of the 4 
behaviours, with accuracies > 96% (Table 2). Most impor-
tantly, it yielded by far the greatest precision for digging 
(92.5%, compared values are identified with an asterisk in 
Table 2) and thus the fewest number of false positives for 
this behaviour, which was required to address our second 
objective. The random forest however yielded a recall 
value that was lower for digging (75.5%, Table  2) than 
for the other behaviours, due to a greater proportion of 

digging false negatives (12 out of the 49 sequences of dig-
ging were false negatives, Table 3). Digging false negatives 
generated a small proportion of false positives in other 
behaviour categories, which were much more frequent in 
the data (Table 3). As a result, all behaviours were classi-
fied by the random forest with a precision > 90%.

Thus, we retained the random forest model to anno-
tate our complete accelerometry dataset. Only 7.5% 

Table 2 Accuracy, precision and recall values obtained for the 4 behaviour categories, for each algorithm. The weighted average 
across behaviour categories is also given

Asterisks allow easy comparison of precision across algorithms for digging. The random forest model was retained and is in bold

Algorithm Classification 
performance

Running Walking Digging Motionless Weighted 
average

Three nearest neighbours Accuracy 98.18 96.82 97.12 97.58 97.53

Precision 95.27 91.34 *80.00 98.21 94.90

Recall 96.58 92.06 81.63 97.05 94.85

Linear support‑vector machine Accuracy 96.36 95.30 94.39 96.67 96.17

Precision 93.57 87.40 *60.00 97.60 91.97

Recall 89.73 88.10 73.47 95.87 91.36

Radial basis function kernel SVM Accuracy 97.12 96.82 96.67 96.97 96.95

Precision 93.79 92.68 *75.47 97.05 93.89

Recall 93.15 90.48 81.63 97.05 93.79

Decision tree Accuracy 97.27 96.21 95.15 97.42 96.99

Precision 93.84 90.40 *64.41 98.79 93.54

Recall 93.84 89.68 77.55 96.17 93.03

Random forest Accuracy 97.58 96.67 97.73 98.03 97.65
Precision 92.76 90.63 *92.50 97.94 95.00
Recall 96.58 92.06 75.51 98.23 95.00

Gaussian Naïve Bayes Accuracy 97.73 96.82 95.61 97.73 97.40

Precision 93.38 98.17 *65.15 98.50 94.83

Recall 96.58 84.92 87.76 97.05 93.94

Linear discriminant analysis Accuracy 98.33 95.91 95.45 97.88 97.42

Precision 97.20 88.37 *67.27 98.80 94.11

Recall 95.21 90.48 75.51 97.05 93.79

Artificial neural network Accuracy 97.42 96.52 96.82 97.42 97.21

Precision 93.88 89.92 *81.82 97.35 94.01

Recall 94.52 92.06 73.47 97.64 94.09

Table 3 Random forest confusion matrix with actual and 
predicted number of observations for each behaviour category

Predicted category Total

Running Walking Digging Motionless

Actual category
Running 141 4 1 0 146

Walking 5 116 2 3 126

Digging 3 5 37 4 49

Motionless 3 3 0 333 339

Total 152 128 40 340 660
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of the 3-s sequences classified as digging by this algo-
rithm were done so wrongly, while the random forest 
missed 24.5% of digging sequences. The random forest 
was therefore conservative when assigning digging to a 
given sequence.

Arctic fox activity budget
Classification of our complete accelerometry dataset 
(Fig.  1E) confirmed that arctic foxes are active hunting 
predators, as 50.7% of their activity budget was devoted 
to active behaviours, specifically running (34.0%), walk-
ing (8.5%), and digging (8.2%). This left 49.3% of their 
activity budget devoted to motionless behaviours. These 
proportions may however be very slightly overestimated, 
as running, walking, digging and motionless composed 
ca. 97% of fox behaviours in the video observations used 
to create our training dataset (Additional file 1: Table S2).

Spatio‑temporal distribution of digging behaviour
Foxes engaged in digging in 31.1% of the 55,434 30-s 
bursts retained for analysis of the spatio-temporal dis-
tribution of digging (Fig.  1G), justifying the use of the 
cloglog-link function in our binomial model since the 
ratio of 0:1 values was 69:31. Probability of digging 
increased with nesting goose density (P1 supported) and 
was slightly lower during brooding compared to incuba-
tion when nesting goose density was > ca. 12 ind/ha (P2 
partly supported; Table 4; Fig. 3A). The effect of nesting 
goose density on the probability of digging was consist-
ent across goose reproduction periods (P3 supported; 
Table  4; Fig.  3A). Probability of digging was the highest 
for reproductive females and the lowest for non-repro-
ductive females, compared to reproductive and non-
reproductive males who showed intermediate values 
(Table 4; Fig. 3B).

Table 4 Results of the generalised linear mixed model (on the 
cloglog‑scale) explaining the probability of engaging in digging 
behaviour (binomial distribution), as a function of nesting goose 
density, goose reproduction period (incubation versus brooding), 
interaction between goose density and reproduction period, 
as well as fox sex, reproductive status and their interaction 
(n = 55,434 30‑s bursts of accelerometry collected on 23 fox‑
years)

We used as reference values nesting goose density = average, 
period = incubation, sex = male, and reproductive status = reproductive. 
Nesting goose density, a proxy for goose nest density, was centered and 
standardised in the model. Variance and standard error were 0.21 and 0.46 for 
fox ID and 0.005 and 0.07 for year

Fixed effect Estimate [95% CI] SE z‑value p‑value

Intercept − 1.35 [− 1.68, − 1.01] 0.16 − 8.31 < 0.001

Nesting goose density 0.16 [0.14, 0.18] 0.01 15.54 < 0.001

Goose reproduction 
period

0.04 [0.01, 0.07] 0.02 2.50 0.01

Density: period − 0.03 [− 0.06, − 0.01] 0.01 − 2.38 0.02

Fox sex 0.59 [0.10, 1.07] 0.23 2.56 0.01

Fox reproductive 
status

0.03 [− 0.07, 0.12] 0.05 0.55 0.59

Sex: status − 1.05 [− 1.16, − 0.94] 0.06 − 18.05 < 0.001

Fig. 3 Predicted probability of digging during a 30‑s acceleration burst (burst interval 4.5 min) as a function of A nesting goose density (a proxy 
for goose nest density) and goose reproduction period (incubation in blue, brooding in orange), and B sex and reproductive status (reproductive 
in blue, non‑reproductive in orange). Nesting goose density was centered and standardised in the model, then back‑transformed before plotting. 
Model reference values are fox sex = male, fox reproductive status = reproductive, period = incubation and nesting goose density = average



Page 9 of 12Clermont et al. Movement Ecology            (2021) 9:58  

Discussion
We demonstrated that high precision movement data 
can indirectly inform hunting behaviour of a terrestrial, 
active hunting predator feeding on small prey requir-
ing short handling times. Through the behavioural clas-
sification of accelerometry data, we detected events of 
digging, a behaviour that our detailed field observations 
associated with food caching. Our methodology should 
be applicable to other small carnivore species that cache 
their food, such as canids and felids [26], or more broadly 
to any predator using foraging behaviours resulting in 
diagnostic acceleration patterns. Furthermore, acceler-
ometry combined with geolocation indicated when and 
where arctic foxes cached their prey, here goose eggs. 
This proved to have strong ecological relevance, since the 
spatial and temporal availability of goose eggs shaped the 
probability of digging. These findings open new opportu-
nities for discovery. Most notably, predator hunting gen-
erates spatial variation in predation risk, which shapes 
prey behaviour and ultimately the structure of prey com-
munities [36, 57]. Therefore, detailed assessments of 
predator activity budgets and identification of key hunt-
ing behaviours are important steps to decipher the mech-
anisms driving local biodiversity, at least in ecosystems 
strongly driven by top-down trophic interactions.

Accelerometry reveals prey caching events
Using a random forest, we classified accelerometry 
data into the four main behaviours composing ca. 97% 
(according to our training dataset) of an arctic fox activ-
ity budget: running, walking, digging and motionless. 
Our classification was 98% accurate, well in line with 
the performance reached with other predator species [3, 
11, 58] although directly comparing studies is risky due 
to varying methods and studied behaviours. Our field 
observations show that digging behaviour can be mostly 
attributed to snow goose egg caching in our study sys-
tem, and we know that foxes forage selectively in patches 
of high nesting goose density [40]. In good agreement 
with the above, we found that the probability of dig-
ging increased with nesting goose density. However, the 
strength of the relationship between the probability to 
dig and nesting goose density may have been decreased 
by habitat characteristics and specificities of fox cach-
ing behaviour. First, patches of high goose nest density 
tend to occur in the most complex habitats, like polyg-
onal wetlands [59], in which fox attacks on goose nests 
are generally less successful, thus reducing egg acquisi-
tion and caching rates [31, 44]. Second, foxes cache eggs 
85 m away (median) from predated nests [30] and goose 
nest density is rather patchy at this scale. Thus, nest 
density may differ between sites of egg collection and 

egg caching. Further research should seek to refine our 
understanding of the spatial distribution of fox digging 
in the greater snow goose colony of Bylot Island. More 
generally, our study should be considered as a first step in 
the use of accelerometry to model foraging behaviour of a 
small terrestrial carnivore.

We also found that the probability of digging by foxes 
was mostly similar between the goose incubation and 
brooding periods. This is counterintuitive since egg avail-
ability should obviously decrease after hatching. Yet, in 
our study system, the rate of egg recovery and recach-
ing was shown to increase over the incubation period 
as foxes manage their stored food [31]. We could expect 
recovery rate to continue to increase after hatching, 
when food availability drops, thus reconciling apparently 
conflicting evidence. Moreover, our results show that 
after egg hatching, recoveries for consumption or recach-
ing were more likely to occur in areas where goose nest 
density was highest, that is where a greater proportion of 
caches were initially made during the incubation period. 
Our results provide new insights on arctic fox foraging 
behaviour, but a finer classification of accelerometry data, 
with more detailed behaviours labeled, would strongly 
enlighten the complex dynamic of prey acquisition, cach-
ing, recovery, recaching, consumption, and even pilfer-
ing, in a predator–prey system characterized by pulsed 
resources, food storage, and delayed food consumption.

Prey caching events inform arctic fox foraging 
and predator–prey interactions
Our analysis of potentially confounding variables on 
the probability of digging suggested that reproductive 
females were more likely to dig (and thus perform egg 
caching or recovery) than males and non-reproductive 
females. If confirmed by larger sample sizes, such vari-
ation in the frequency of digging across sex and repro-
ductive classes opens the door to productive tests of 
hypotheses. For example, more food caching by repro-
ductive females than by males might indicate greater 
parental investment. Alternatively, reproductive males 
may prefer to bring food to the den to feed the female and 
the young, instead of caching it. Testing these hypotheses 
using accelerometry could quickly enhance our under-
standing of reproductive and movement ecology in arctic 
foxes and many other small to medium size predators.

Furthermore, as arctic foxes are territorial and 
tend to avoid territory borders [40], their territorial-
ity could lead to non-random distribution of specific 
behaviours. For example, caches could be preferen-
tially located away from territory edges to reduce pil-
ferage, as observed in wolverines (Gulo gulo) that tend 
to cache food in sites less exposed to competitors [25]. 
Another interesting avenue would be to directly assess 
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arctic fox tendencies to do cache pilfering in neigh-
bour territories or along overlapping areas. Interest-
ingly, Samelius and Alisaukas [38] observed on Banks 
Island (Canada) that during years where arctic foxes 
were very abundant, they recovered and moved cached 
eggs at a higher rate, potentially due to increased cache 
pilfering.

In our study area, foxes select habitats where lem-
mings and geese are most abundant [40]. This gener-
ates spatial variation in predation risk, with cascading 
effects on nest site selection, anti-predator behaviour, 
or nesting success of multiple migrating birds [35, 36, 
60]. Differences in hunting behaviour among foxes, 
driven for example by female reproductive status, may 
lead to differences in predation risk among and within 
territories. Finer temporal and spatial scale analyses of 
predator hunting behaviour may help to better under-
stand fine scale variation in prey distribution and 
behaviour.

Arctic fox activity budgets may vary on much larger 
temporal and spatial scales than considered above, due 
to changing prey availability across time and space. 
First (seasonal variation), foxes often forage on the sea 
ice, far away from their territory, to find food during 
winter [61]. Yet, to our knowledge, no data exists on 
fox activity budgets in winter. Second (yearly variation), 
lemming abundance peaks every 3–4  years on Bylot 
[42] and this influences the intensity of food caching by 
foxes [31], with likely effects on their activity budgets. 
Third (spatial variation within Bylot), how much a fox 
territory overlaps the greater snow goose colony should 
strongly influence fox activity budget (all foxes studied 
here lived in the colony), given that spatial heterogene-
ity of the prey base should induce among-individual 
differences in hunting behaviour. Fourth (spatial varia-
tion across the species distribution), we should expect 
the activity budget of foxes to strongly vary at the cir-
cumpolar scale given the many ecological conditions 
faced by the species [29]. Better understanding the 
determinants of fox activity budgets has direct ecologi-
cal relevance. For example (yearly variations), preda-
tion risk on nests of many bird species decreases with 
lemming abundance on Bylot, likely due to changes in 
arctic fox behaviour, their shared main predator [62]. 
Similarly (spatial variation within Bylot), fox predation 
on artificial nests decreases and shorebird nest abun-
dance increases with distance from the goose colony, 
where arctic foxes aggregate [34, 60]. Thus, accelerom-
etry data collected on small predators such as arctic 
foxes over multiple temporal and spatial scales creates 
new opportunities to shed light on the mechanisms 
through which predation shapes community structure 
and function.

What about acquisition rates and functional responses?
We have shown that quantifying behaviours indicative 
of foraging (and thus composing a predator’s hunt-
ing strategy) offers opportunities to identify predation 
events. This was, to our knowledge, never achieved 
before in a small active predator feeding on small prey 
(50–100 g). Work is still needed, however, to fully esti-
mate acquisition rates of small predators such as the 
arctic fox. In particular, not all prey items are cached 
after capture, caching rates can vary with prey avail-
ability, and some prey items can be cached and recov-
ered several times. Thus, caching rates do not directly 
translate into acquisition rates. Future research should 
seek to differentiate digging events associated to cach-
ing of food items such as lemmings, large goose eggs, 
small passerine eggs, pieces of large mammal carcasses, 
etc., and differentiate among events of caching, cache 
recovery, recaching and eating. This will potentially 
be achieved using modelling techniques that identify 
microevents [63], or other data sources such as video or 
audio recorders [3]. At last, such a precise classification 
would allow the estimation of the predation metrics 
used to derive functional responses, which are central 
to predator–prey interactions as they determine links 
between trophic levels [5, 64].

Conclusion
We developed a supervised-learning algorithm to 
classify arctic fox accelerometry data into four main 
behaviours. This allowed us to assess spatio-temporal 
variation in fox probability to dig, a behaviour associ-
ated with prey caching. In doing so we demonstrated 
that high precision movement data may be used to 
study the hunting behaviours of predators of small body 
size, as long as their foraging behaviours contain diag-
nostic acceleration patterns. Importantly, the identifi-
cation of predation events from movement data opens 
the possibility to estimate predation metrics needed to 
disentangle the mechanisms structuring predator–prey 
relationships and trophic networks.
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