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Abstract 

As human and automated sensor networks collect increasingly massive volumes of animal observations, new oppor-
tunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets 
include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated 
sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observa-
tions, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many 
locations and times it is possible to infer spatially continuous population-level movements. Population-level move-
ment characterizes the aggregated movement of individuals comprising a population, such as range contractions, 
expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A 
desire to model population movements from such forms of occurrence data has led to an evolving field that has cre-
ated new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observa-
tions. The insights generated from the growth of population-level movement research can complement the insights 
from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially 
larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discuss the lat-
est approaches for utilizing them in population-level movement analyses, and highlight studies where such analyses 
have provided ecological insights. We outline the conceptual approaches and common methodological steps to 
infer movements from spatially distributed occurrence data that currently exist for terrestrial animals, though similar 
approaches may be applicable to plants, freshwater, or marine organisms.
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Background
Describing how the locations of individuals or popula-
tions change across space and through time is an impor-
tant part of understanding many different levels of 
ecological organization. Tracked movements can allow 
us to understand individual behaviors (e.g., establishing 
home range, mate seeking, emigration to new territory 

[1–3]), the consequences of inter- or intra-specific inter-
actions (e.g., competitive, facilitative [4, 5]), how indi-
viduals track and acquire resources (e.g., follow resource 
pulses, seasonality, migration [6–8]), or the effects of nat-
ural or anthropogenic perturbations (e.g., relocating from 
catastrophe or land use change, shifting habitat use in 
response to climate change or changes in resource avail-
ability [9, 10]). Recent technological innovations have 
expanded our ability to document fine-scale movements, 
and to track individuals over both short and long dis-
tances and time periods. Tracking sensors are becoming 
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smaller, more affordable, and are being applied to an 
expanding range of taxa (e.g., birds, whales, bats, insects, 
fish [11, 12]). From such devices, the movements of indi-
viduals can be tracked, allowing researchers to connect 
known locations through time to understand how and 
where individuals move, or to evaluate the movements of 
many individuals to understand interactive components 
of movements among conspecifics or between species, or 
to summarize how aggregate populations move through 
time (e.g., [13, 14]).

Tracking data, however, are often limited to a small 
number of individuals (< 30) over short time periods 
(days to months), restricting the ability of researchers 
to generate broad-scale inferences [15–17]. In addition, 
individual-level tracking data are often constrained due 
to organisms or species having small body size [18, 19], 
budgetary limitations [20], or high tag loss (anatomical, 
behavioral, animal safety [21–23]). It can also be chal-
lenging to mark and track a sample of individuals that 
adequately represent broadly distributed species or spe-
cies with large populations (e.g., [24, 25]). Because of 
these limitations, it is often more feasible to collect indi-
vidual locations where identity is not retained over time 
(occurrence data), especially across large spatial and 
temporal scales. Even where individual-level movement 
data exist, complementary approaches that instead use 
individual occurrence data to study emergent dynamics 
in population distributions, referred to as population-
level movement (previously described in [26–28]), have 
the potential to address knowledge gaps and advance our 
understanding of general movement phenomena (Fig. 1), 
ecological interactions, disease spread [29], invasive 
species and range-expanding species [30–32], climate 
response [7, 10, 14, 33, 34], and conservation of mobile 
populations, such as those that migrate [35].

Population-level movement can be summarized by an 
aggregate metric of the population distribution (e.g., its 
center or boundary) and quantified by its rate of change 
(direction, magnitude) across a subset of individuals 
within a defined population, species, or geographic area. 
Population-level movement, or redistribution, includes 
migration, nomadism, and the shifts of previously sed-
entary ranges or established natal or breeding  disper-
sal areas [26, 37, 38]. Movement at the population-level 
can result from individual behavior, demographic pro-
cesses, external factors, or their combined effects (Fig. 2). 
Despite the strengths of individual-level tracking data, 
researchers are increasingly able to turn towards occur-
rence data from human and automated sensor networks 
to infer macro-scale population-level movements [11, 
39, 40]. Recent advancements in data acquisition, pro-
cessing, and analysis have allowed broad-scale occur-
rence datasets to be used to infer spatially continuous 

movement of populations across the landscape over short 
to long timescales. Adding a macroecological lens to 
movement ecology provides a novel perspective for con-
necting individual processes and behaviors to emergent 
population-level movements across a range of temporal 
scales (seasonal, interannual, multi-generational, or evo-
lutionary) and the big-picture trends in geographic range 
movement, expansion, or contraction that are occurring 
in response to ongoing regional and global changes [41].

Animal occurrence data, often collected as static pres-
ence, presence/absence, counts, or density in space and 
time along with a measure of sampling effort, are increas-
ingly available through widely distributed sensor net-
works. These sensors can be human, as in the case of 
crowdsourced initiatives where tasks such as data collec-
tion or processing are outsourced to an undefined and 
large group of volunteers [43]. In other cases, automated 
sensor networks collect data passively. Examples include 
weather surveillance radar [39], acoustic monitoring [44], 
or image monitoring [12, 45]. Some efforts overlap, with 
automated sensors passively collecting data, through a 
crowdsourced network of volunteer maintainers (e.g., 

Spring migra�on Autumn migra�on
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Fig. 1 Map of the Western Hemisphere displaying locations of 
Broad-winged Hawk (Buteo platypterus) during spring and autumn 
migration. The top row shows 7394 locations from 21 GPS-tracked 
individuals compiled from 2014 to 2020, accessed from Movebank.
org (study name “Broad-winged Hawk habitat use, range, and 
movement ecology, study ID 28691134) on 19 May 2021. The bottom 
row shows 277, 398 unique Broad-winged Hawk occurrence locations 
in eBird from 2014 to 2020 [36]
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[46, 47]). In all cases, each occurrence record represents 
an individual observation, a count, or a density of indi-
viduals, but in most cases, records lack individual identi-
fiers that would allow linking the same individual animal 
to multiple locations at different times, and thus, explic-
itly record movement. To ascertain movement patterns, 
general requirements are that the network of sensors be 
distributed across a broad spatial extent, and that the 
sensor network collects data at a high enough temporal 
frequency relative to the movement properties of the 
species in order to detect shifts in location, and relative 
to the needs of the research question. For example, to 
infer population-level movement of a seasonally migrat-
ing species, a sensor network would need to include 
observations from across the summer and winter ranges 
and within regions of passage, with occurrences docu-
mented frequently throughout the species’ annual life 
cycle (Fig. 1).

Many datasets provide publicly available occurrence 
location data (Table 1), and the past decade has seen an 
increase in the number of datasets and new methods 
developed to infer population movement from occur-
rence data. Such occurrence datasets are commonly 
used to estimate species distributions at a single point 
in time or by pooling data across years (e.g., [48, 49]), 

which generally represent a static perspective of species 
location or occupancy across a landscape. Species dis-
tribution models are also often used to forecast changes 
in distribution in response to changes in climate or land 
use (e.g., [50, 51]). While species distribution models 
do not directly estimate movement, they can be used to 
measure different aspects of a population’s location in 
time and space, and by linking changes in those meas-
ures across time, one can infer patterns in population-
level movement that include migration, nomadism, or 
range shifts. To date, little synthesis has been done on 
the data, methods, and types of models used to infer 
population-level movement from occurrence data. The 
purpose of this review is to (1) to lay out a theoretical 
framework to understand and guide population-level 
movement research, (2) summarize existing broad-scale 
species occurrence datasets, (3) discuss the latest statis-
tical and modeling approaches for inferring population-
level movement, and (4) highlight where such studies 
have provided ecological insights. Through the review, 
we hope to provide guidance to researchers conducting 
their own movement analysis using occurrence data, and 
to identify areas ripe for future research or development. 
We restrict our discussion to population-level move-
ments in terrestrial animals, mostly at regional and larger 

Fig. 2 A population-level framework for movement ecology. Measures of population-level geographic distributions and ranges and their 
quantified movement through time emerge from multiple processes including individual behaviors (sensu the movement ecology framework, 
[42]) and demographic processes, both of which occur within the context of external factors. Additionally, observation processes may influence 
observed population-level patterns and must be accounted for to obtain reliable inferences. Population-level movement can be estimated across a 
broad range of spatial and temporal scales beyond individual-level movement. Population-level and individual-level measures are each capable of 
capturing movement phenomena with some overlap between approaches such as patterns related to migration, vagrancy, and nomadism
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spatial scales, and seasonal or longer temporal scales, 
though similar insights may be applicable to marine or 
aquatic animal studies, or at finer spatial or temporal res-
olutions (Box 1).

A theoretical framework for population‑level 
movement
Recent statistical and modeling advances have allowed 
researchers to use occurrence data to infer spatially 
continuous population-level movement across the land-
scape. The types of population-level movement ques-
tions that can be answered with occurrence data differ 
from traditional individual-level movement questions 
using tracking data. Occurrence data are well suited for 
documenting movements between regions that occur 
in a relatively short time frame, such as days, weeks or 
months (migration, nomadism, or dispersal; sensu [17, 
37, 38]) or for documenting movements and geographic 
range shifts that occur across a relatively long time frame, 
such as multiple years, generations, or evolutionary time 
[55, 56]. In contrast, occurrence data are poorly suited for 
determining the movements within resident populations 
(e.g., encamped movements related to behavioral activi-
ties like foraging). Beyond describing a movement path, 
the movement ecology paradigm identified three basic 
components focused on individual movement—internal 

state, navigation capacity, motion capacity—and their 
correlation with external factors [42]. Importantly, since 
occurrence data frequently represent locations where 
individual identity is not retained over time, movement 
paths cannot be described for specific individuals, and 
variation in movement cannot be attributed to individual 
characteristics such as age, genetics, phenotype, behav-
ior, or interactions [57]. Instead, occurrence data can be 
used to identify population-level movement patterns that 
emerge from demographic processes and the movement 
of individuals. Population distributions can be compared 
within or across years or between different groups  (i.e., 
species or regions), and changes or differences in distri-
bution may be used to discern external abiotic or biotic 
correlates of movement.

We outline a population-level movement framework 
that builds upon the individual-level movement ecol-
ogy paradigm [42], recognizing that population-level 
distributions emerge from individual movement mecha-
nisms [26] and movement types [38] along with demo-
graphic processes (Fig.  2). This framework recognizes 
the disparate spatial and temporal scales at which the 
individual- and population-level processes often play 
out and organizes different movement types within 
these scales. Emergent changes in population distribu-
tion (i.e., population-level movement) may be influenced 

Box 1 Key terminology needed to use this review as a guide

Glossary

Tracking data Locations of uniquely identified individuals that are linked through time
Occurrence data Locations that cannot be identified to specific individuals but can be labeled as belonging to a particular population, species, or 
taxonomic group. Occurrence records at a location may be measured as presence, count, or density values
Population The group of individual observations to which one wants to make inference. For example, a subset of individuals within the same or 
multiple species, a subpopulation within a defined geographic area, a meta-population considered as a whole across a region, or even a whole 
species spread across a region or continent. This definition differs somewhat from a biological population, and is more similar to a statistical popu-
lation, which is defined by the set of observations of interest for a specific question
Individual-level movement A movement path generated by linking locations of the same individual through time
Population-level movement Population redistribution over time, which can be summarized by an aggregate metric such as center or boundary, 
and quantified by its rate of change in direction or magnitude. Movement at the population level can result from individual behavior, demo-
graphic processes, external factors, or their combined effects
Crowdsourced data Data collected with or without strict protocols by volunteers distributed across many locations, and placed into a repository 
for review and inclusion in an overall database. Advanced internet technologies are often used to harness these efforts. May also be referred to as 
citizen science, civic science, community science, or public monitoring data
Structured to unstructured data continuum Structured data are typically stored in tabular or relational database formats, machine readable and 
could be readily used in an analysis. In contrast, unstructured data are typically found in audio, image, video, or unstructured text formats, are 
not readily machine readable and require further specialized processing to be ready for analysis. For example, conversion and translation are 
needed to interpret the raw data (i.e., a target that is visible in an image or audible in a recorded sound) to an identification of the presence of an 
individual of a particular species. Semi-structured data fall somewhere in between, for example in xml formats where user-defined tags may be 
used [52]
Structured to unstructured project continuum Structured project or network designs collect data with rigorously prescribed protocols and tightly 
controlled measurement error, ideally with randomization to ensure representation of the overall population, and are implemented for a specific 
purpose or planned data analysis with clear objectives. In contrast, unstructured projects or network designs collect data by open recruitment, 
with few rigorous protocols, and with typically large variation in data quality and quantity within the network. Semi-structured projects fall some-
where in between, for example, by collecting information on potential covariates or biases that can be accounted for in later analysis (sensu [53, 
54])
Movement Ecology Paradigm Nathan et al. [42] proposed this paradigm to organize individual movement research, based on four mechanistic 
components of organismal movement: (1) internal state, (2) motion, or (3) navigation capacities of an individual, and (4) external factors affecting 
movement
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by scale-dependent external factors, including biotic 
interactions, resource environments, climate change, 
and anthropogenic disturbance [26, 38]. In some cases, 
such as migration and nomadism, the different types of 
population-level movement roughly overlap with types 
that can be observed in individuals [37], whereas other 
types of population-level movement, such as range shifts, 
emerge from aggregate, long-term changes in individual 
behavior and demographic processes.

Research themes
We propose grouping population-level movement 
research into four thematic research areas: (1) Quantify 
population-level patterns of movement, (2) assess how 
species traits influence population-level movement (i.e., 
internal factors), (3) study how population-level move-
ments correlate with external factors, and (4) connect 
movement patterns with conservation or management 
schema (i.e., implications and applications) (Box 2).

Occurrence data
Most sensor-network occurrence data fall somewhere 
along the continuum of structured to unstructured data 
[52], and of structured to unstructured projects (Box  1, 
[53, 54, 58]). From a big data perspective, occurrence 

data generated by human or passive automated sensors 
may be structured as tabular or database formats that 
are easily machine readable (analysis ready), unstruc-
tured as audio, image, video or text files that are not eas-
ily machine readable, or fall somewhere in between as 
semi-structured data [52]. From a study design perspec-
tive, projects that generate occurrence data range from 
structured to unstructured sensor networks. Structured 
projects use rigorously prescribed protocols, implement 
systematic or random sampling to ensure locations are 
representative of a larger population of interest, and are 
implemented for a specific purpose or planned data anal-
ysis with clear objectives [53, 54], for example, long-term 
standardized projects like the UK Butterfly Monitor-
ing Scheme [59] or national weather surveillance radar 
systems [60]. In contrast, unstructured projects are col-
lected by open recruitment, with few rigorous protocols, 
and typically exhibit large variation in data quality and 
quantity (e.g., iNaturalist, [61]). Semi-structured projects 
fall in between [53, 54, 58]. Data resulting from semi- 
and unstructured projects are not typically designed to 
answer specific research questions [53], or to adhere to 
particular statistical or study design principles but are 
often collected with the goal of sampling a large por-
tion of the total population within a defined area [40]. 

Box  2 Thematic research areas and specific research questions that are important to the emerging field of population-level 
movement ecology

These categories originate from the new population-level movement framework proposed here, and the constraints that limit certain types of analyses when 
individuals identities cannot be retained

Example research categories and question types

Research Theme 1: Quantify population-level patterns of movement

1. How does the geographic center of a population change seasonally and through time? What is the distance covered, rate of temporal change 
or speed, directionality, and intra- and inter-annual variation? What is the timing of migration and how does the distribution of a population 
change during migration?
2. How does the location of range boundaries or population clusters within a species’ range, change seasonally and through time?
3. How does the population’s movement compare to other populations or species?

Research Theme 2: Assess how species traits influence population-level movement

4. How is population movement constrained or facilitated by average behavioral, physiological, or morphological traits of the species?
5. For migratory species, how do migration strategies (e.g., partial, full, differential, irruptive), migration distance, morphology (e.g., body mass), or 
behavior (e.g., diet) impact movements?
6. To what extent are observed differences among species explained by their traits?

Research Theme 3: Study how population-level movements correlate with external factors

7. Which external factors (ecological, environmental, geographic, or anthropogenic) correlate with population-level movement? How and where 
do populations move in relation to these external factors?
8. What are the most relevant spatial and temporal scales for biotic or abiotic interactions to impact movement?
9. Can we develop empirical mechanistic models of population-level movement based on the observed occurrencees and external factors?

Research Theme 4: Connect movement patterns with conservation or management schema

10. How does the population’s movement or the movement of it’s range center or edges contribute to or change biodiversity patterns?
11. What environmental or landscape factors are needed to maintain or improve population movement efficiency or to reduce risk during move-
ment? How are the consequences of global change (climate change, land-use change, and environmental pollution) affecting, or forecasted to 
affect, population-level movements?
12. Do movement trends and associations with environmental drivers suggest changes to location or range that could help guide priority con-
cern or management strategies? Are there natural or anthropogenic barriers to movement that might be important when considering conserva-
tion under changing climate, where species may seek to move to colder areas at higher latitudes or elevations?
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Unstructured and semi-structured project examples 
often include human sensor networks such as eBird [36] 
and eButterfly [62], or other crowdsourced data plat-
forms relying on professional or volunteer observers [43, 
63] that may or may not collect effort covariates designed 
to account for potential sources of bias in the data [58, 
64]. Structured project examples often include passive 
automated sensor networks that are designed by a central 
institution (e.g., weather surveillance radar as part of a 
national weather monitoring system). Structured projects 
may collect structured, semi-structured, or unstructured 
data, and the same is true for unstructured projects. The 
proliferation of occurrence datasets and projects that 
vary from structured to unstructured provides new chal-
lenges and opportunities for observing and estimating 
population-level movements across broad spatial scales.

Crowdsourced data can leverage the interests or exper-
tise of many individuals to collect relatively high-density 
occurrence data across broad geographic areas and at 
high frequency through time. Many such efforts have 
gained traction with general community members and 
provide rich, and often publicly available, data sources 
[65]. The applications or websites on which volunteers 
enter occurrence information can provide some struc-
ture to the data, while allowing for flexibility in observer 
expertise and motivation (e.g., a casual observer who 
largely ignores protocols to an observer that is dedicated 
to following strict protocols). Many platforms for crowd-
sourced data provide a method for “vetting” or filtering 

the data to address obvious data quality issues such as 
misidentifications. eBird (www. ebird. org) has been a 
leading example, capitalizing on already dedicated bird-
ing groups and hobbyists, and developing a platform 
that mimics the checklist format already popular among 
birdwatchers [36]. New analytical methods and proce-
dures have been developed to leverage the information 
provided by eBird to generate reliable estimates of spe-
cies occurrence [66]. Other datasets focus on differ-
ent taxonomic groups and geographic regions, but are 
increasingly providing the quality, density, and frequency 
of human-observed data necessary to assess population-
level movements (Table  1). Appropriate use of crowd-
sourced data requires careful consideration of imperfect 
and variable detections as well as spatiotemporal varia-
tion in sampling intensity, with observations often biased 
towards easily accessible locations containing unique or 
abundant species [64, 65, 67–69].

In addition to the crowdsourced data provided by direct 
observations, new technologies are expanding opportu-
nities for automated observation networks, which can be 
used to document occurrences and infer population-level 
movements. Examples of automated networks include 
weather surveillance radar (WSR), acoustic monitor-
ing, and camera traps. WSR stations were developed for 
the purpose of monitoring precipitation, but such data 
streams provide new opportunities to monitor biologi-
cal populations (e.g., [79, 80]). These data may be used to 
monitor specific taxonomic groups (e.g., birds, bats, or 

Table 1 Examples of occurrence datasets that are publicly available or can be accessed through a registered user account

The temporal extent is noted for each dataset, though it is important to recognize that most of these efforts have a significant “ramp up” period, and the frequency 
and quality of data from the earliest years may not be high enough to support broad-scale analyses. This list is not exhaustive and is meant to illustrate different 
taxonomic examples across the globe that could be used to infer population-level movement

Example occurrence dataset Sensor type Taxa Spatial extent Temporal extent

iNaturalist; https:// www. inatu ralist. org [61] Crowdsourced human observers Any Global 2008–present

Global Biodiversity Information Facility 
(GBIF); https:// www. gbif. org/ [70]

Professional, governmental, and crowd-
sourced human observers

Any Global 2001–present

eBird; https:// ebird. org/ [36] CROWDSOURCED human observers Birds Global 1800–present

Herpmapper https:// www. herpm apper. 
org/ [71]

Crowdsourced human observers Herptiles Global 2013–present

eButterfly; https:// www.e- butte rfly. org/ [62] Crowdsourced human observers Lepidoptera North America 2011–present

UK Butterfly Monitoring Scheme; https:// 
ukbms. org [59, 72, 73]

Volunteer, professional, and governmental 
human observers

Lepidoptera United Kingdom 1976–present

United States weather surveillance radar 
[74, 75]

Weather surveillance radar Aerofauna North America 1991–present

European weather surveillance radar; 
OPERA [60, 76]

Weather surveillance radar Aerofauna Europe 2012–present

North American Bat Monitoring Program; 
[77] https:// www. nabat monit oring. org/ 

Professional and governmental acoustic 
surveys

Bats North America 2009–present

Snapshot USA (eMammal);
https:// emamm al. si. edu/ snaps hot- usa [55]

Crowdsourced camera traps Terrestrial mammals United States 2019–present

FrogID; https:// www. frogid. net. au/
[56, 78]

Crowdsourced human observers via 
acoustic app

Frogs Australia 2017–present

http://www.ebird.org
https://www.inaturalist.org
https://www.gbif.org/
https://ebird.org/
https://www.herpmapper.org/
https://www.herpmapper.org/
https://www.e-butterfly.org/
https://ukbms.org
https://ukbms.org
https://www.nabatmonitoring.org/
https://emammal.si.edu/snapshot-usa
https://www.frogid.net.au/
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insects) but the data typically cannot be parsed into indi-
vidual species [81–83]. Exceptions include species that 
occupy large roosting sites during the night, whose dawn 
departures can be detected by WSR [84, 85]. Significant 
technical knowledge is often required to screen and pro-
cess WSR data [86]. After processing, WSR data may be 
capable of providing relative densities of biological tar-
gets as altitudinal profiles of density, speed and direc-
tion [87, 88]. Like crowdsourced occurrence data, WSR 
data cannot track specific individuals, but it can provide 
a cost-effective density-based estimate of the distribution 
and movement of aerofauna across space and through 
time. There are several national and international WSR 
networks that provide data openly, or in agreement with 
specific research groups. WSR data is freely available 
in the United States (i.e., [74]) and in Europe through a 
multinational data exchange program (OPERA, [60, 76]). 
Although some data and methods for parsing biologi-
cal entities have also been published (e.g., MistNet, [89, 
90]), acquiring and analyzing WSR data across other 
geographic and political regions may be more challeng-
ing due to WSR coverage gaps, limited data accessibility, 
and interoperability of data streams across stations [80, 
91, 92].

Automated sensor networks may also include audio 
or visual technologies, such as acoustic monitoring and 
camera traps, and are sometimes deployed or maintained 
using crowdsourced volunteers (e.g., [46, 77, 93–95]). 
Camera trap and acoustic sensors may vary in their abil-
ity to isolate likely image or audio targets, may be patch-
ily distributed across the landscape, and users may need 
to rely on automated software tools that are not 100% 
accurate or require time-consuming manual vetting pro-
cesses [96]. Thus, one challenge with acoustic and cam-
era trap data is the combination of technical software and 
skill needed to identify and isolate the correct sounds or 
images for analysis [97], but also the human time that is 
often needed to manually validate portions of the data for 
accuracy [96, 98, 99]. Sparse arrays of acoustic or camera 
monitors may be useful for confirming a species’ occu-
pancy, or for estimating animal activity patterns, abun-
dance, or species diversity in an area, especially when 
robust methods for confirming species presence have 
been developed [100, 101], but much larger and denser 
arrays would be needed to infer population movement 
through or within an area [46]. Differences in camera 
trap survey designs, including baited versus unbaited sta-
tions, have been found to have significant consequences 
for occurrence frequency and detection rates [102, 103]. 
However, there are several examples of such arrays that 
have been used to infer population movement—acous-
tic recordings for bat occupancy trends across space and 
through time [104], camera traps for raptor prevalence 

and migration [46] and migration timing and speed of 
caribou and ptarmigan [105]. Although acoustic moni-
toring is most frequently used to observe species within 
a local area or during non-movement periods, it has also 
been used to detect bird populations during migration 
[106] or to “catch” the short flight calls that birds emit 
during migration [107]. Decreasing costs of Autonomous 
Recording Units (ARUs) and camera units may increase 
the feasibility of deploying these sensor technologies to 
detect and infer population movement in future studies 
[100, 108].

Due to the partially unstructured nature of data, com-
mon for all of these networks, these datasets require a 
significant time investment to process and validate data, 
and careful consideration of possible sampling biases and 
variability in an observer’s skill before they can be used 
for analysis. A benefit for population-level movement 
research is that much of these data are publicly available 
(Table 1) or are available upon request, in contrast with 
individually tracked data, which may be more likely to be 
protected and only accessible within specific labs or insti-
tutions (but see Movebank’s data repository for a library 
of openly published individual track data; https:// www. 
datar eposi tory. moveb ank. org/). Data from crowdsourced 
human and sensor networks are most readily available at 
appropriate densities from the northwestern hemisphere, 
specifically from North America and Europe, and have 
a strong bias towards aerofauna, including birds, flying 
insects, and bats.

Analytical approaches to estimate population‑level 
movement
Data processing
Prior to statistical analysis, occurrence data frequently 
require cleaning and processing. Data processing meth-
ods may differ among datasets and for distinct research 
questions, but general challenges include estimating 
occupancy from presence-only data [109], standardizing 
sampling intensity by subsampling observations (e.g., [67, 
110]), accounting for low detection probability of certain 
species or in certain time periods or habitats [102], the 
potential for false positive occurrences [96], and account-
ing for detection or sampling biases related to human 
behavior [66]. Clear guidelines or code to aid in process-
ing the data may be available for some datasets, or may 
require more technical knowledge to navigate, especially 
for WSR, acoustic, or image data [89]. In other cases, 
common clear methods may not exist, and a researcher 
may need to develop their own data processing workflow 
using appropriate analysis techniques that account for 
imperfect detection or variable sampling effort (Fig. 3).

https://www.datarepository.movebank.org/
https://www.datarepository.movebank.org/
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Data vetting and cleaning
Technical and logistical challenges exist for research-
ers using semi-structured or unstructured data, as data 
are often not ready “out of the box” for analysis, and 
because different data and project structures require 
unique statistical approaches to minimize bias [53, 
111, 112]. Each occurrence dataset will contain dif-
ferent fields, constraints on data collection, variability 

among sensors or observers, and the oversight or pro-
tocols behind a given project. These factors need to be 
accounted for to reduce bias and avoid flawed conclu-
sions (Fig. 3) [58, 65]. Variability in data collection and 
data quality can often be dealt with in the data process-
ing stages but may also need to occur within the data 
analysis stage. When preparing occurrence datasets for 
movement analysis it should be useful to follow some 

Fig. 3 Schematic of the steps from data selection to data processing and analysis that could be used to evaluate population-level movement from 
occurrence data. An example is shown using eBird occurrence data from the western and eastern flyways of the Yellow-rumped Warbler (Setophaga 
coronata) in 2019 [36], but the same general workflow could be applied to other occurrence datasets. Yellow-rumped Warbler silhouette was 
created by Cornell Lab of Ornithology and is used with permission
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or all of the checks presented below for filtering data, 
checking for coverage, accuracy, and accounting for 
variability.

Filter for observations of interest
For any occurrence dataset, an initial first step is often 
to parse out observations that represent biological enti-
ties, the target specie(s) and/or locations of interest, and 
observations that have a high likelihood of being accurate 
(e.g., not a misidentification). For WSR and other auto-
mated sensor network data such as acoustic or camera 
arrays, simply identifying records that represent biologi-
cal entities, and then filtering to the target species or taxa 
is itself a non-trivial process (e.g., [113, 114]). Many tools 
have been developed to screen and process WSR data for 
biological information including the Bias Improvement of 
Radar Data System (BIRDS; methods described in [115]), 
and computational packages such as w2birddensity (part 
of WDSS-II [116]), vol2bird [87], R package bioRad, 
[117], and MISTNET [89]. Camera trap and acoustic data 
research also increasingly rely upon artificial intelligence 
systems to automate and speed the process of filtering 
for target biological entities [97, 118–122], possibly using 
image or acoustic libraries (e.g., [123]). But such data still 
often require a significant investment in manual human-
verification (e.g., [98]) before the data can be used for 
analysis.

Check for sufficient observation density and trends 
over time
To infer movement, the data need to have adequate 
coverage across space and time. Determining if there is 
sufficient data can be done in multiple ways, but often 
requires simply exploring patterns or structure in the 
data across time and space (e.g., using binned data). Sim-
ple visualizations or descriptive summary statistics may 
help the researcher determine if patterns occur due to 
imbalances in sampling, survey effort, or data collec-
tion methods, or represent valid ecological patterns. 
Strong increasing trends in total occurrences, the num-
ber of spatial locations observed, or the number of time 
frames observed may indicate that a data set is under-
going strong growth and should be used to infer move-
ment with caution, or that it requires the application of a 
subsampling or weighting method as a first data process-
ing step (e.g., [124]) (Fig. 4). Less pronounced increases 
or plateaus in the occurrence trends may indicate more 
stable data collection across space and time (Fig. 4). Con-
trolling for overall sampling effort, spatially or temporally 
binning occurrences, and resampling or subsampling 
methods may all be useful ways to control for variability 
in sampling effort when analyzing occurrence data. In 

some cases, the researcher may decide to drop certain 
time frames or spatial areas from analysis if they do not 
meet a minimum threshold of occurrences for analysis 
(inclusion criteria; e.g. see methods from [124]).

Check observation accuracy
Data veracity is a challenge for many occurrence data-
sets, and substantial variability in data quality may exist, 
including the existence of false positive or false negative 
records. Such inaccuracies, misidentifications, or imper-
fect detections are mainly a problem if they change sig-
nificantly over space or through time. Fortunately, many 
occurrence datasets have protocols in place for human 
experts to validate questionable observations. For exam-
ple, programs like eBird, Project FeederWatch, and Herp-
Mapper use automated processes [126] and expert review 
[36, 71] to validate the data. Expert review may also be 
used to validate signals resulting from automated classifi-
cation processing of acoustic or camera sensors [98, 99]. 
When using occurrence data, a researcher should first 
review the guidelines for individual datasets (e.g., [66, 
127]) or view protocols or methods from recent publica-
tions that address potential sources of inaccuracy in the 
data (e.g., false-positive occupancy models [96]). When 
guidelines do not yet exist, researchers may need to rely 
on expert knowledge to look for and filter outliers or 
suspect records on their own. A researcher may want to 
consider the species- or habitat-specific context for their 
research subject and use their own protocols to filter 
occurrence records outside the known species range or 
cases where the species is known to have low detection 
probability or high misidentification rates (e.g., in the 
case where two similar species co-occur). Often, occur-
rence data are used to quantify occupancy (presence 
within a spatial area or grid cell) or relative abundance. 
Although abundance estimators are sometimes used with 
occurrence data, these methods often require strong 
assumptions (e.g. population closure, no double count-
ing, and constant detection probability) that are difficult 
to verify and can significantly impact estimator accuracy 
[128–130].

Quantify and control for variability
Perhaps the largest challenge is to acknowledge and 
account for sources of variability that originate from the 
observation process (e.g., variability in sampling effort or 
observer skill level) within occurrence datasets and con-
trol for it where possible. Substantial variability in data 
quality, data volume, and overall sampling effort across 
time and space are characteristics of “big data” [52, 65] 
that are also common to occurrence data. Data fields 
that record sampling effort, sensor placement, factors 
related to detection probability, and spatial and temporal 
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resolution of the data, should be collected and included 
in models to help control for variation when possible. 
Other effort-based measures may be used, such as time 
spent searching, distance traveled while searching, num-
ber of observers in the search party, or time of day (e.g., 
eBird [36]). For camera traps or acoustic sensors, effort-
based measures could include fields for the number of 
days a camera/acoustic sensor was active, whether it was 
baited or not, or if sensors were placed randomly or cho-
sen opportunistically to increase detection, for example, 
by focusing on known travel routes or previous occur-
rence locations [103]. Such measures can help to control 

for crowdsourced effort differences across time and 
space, rather than using the raw occurrence data.

Recent work has focused on developing methods and 
approaches that account for variable and spatially biased 
sampling effort, sometimes by integrating data from mul-
tiple structured and/or unstructured projects [131–133], 
binning the data spatially and/or temporally ([28], e.g., 
[134]), or weighting records [135]. For example, data can 
be standardized within a spatial bin by accounting for 
overall sampling effort (e.g. the total number of observ-
ers). Effort measures can be used to weight records, as 
predictors in an analysis, or in some cases, modeled using 

Fig. 4 A worked example exploring observation trends in eBird occurrence data from 2008 to 2019 for two closely related species: migratory 
Black-chinned Hummingbird (Archilochus alexandri) and range-expanding Anna’s Hummingbird (Calypte anna) [125] from the western flyway of 
North America [36]. Even closely related species can display different dynamics, which can dramatically affect how the data is structured across 
space and time. (A) The total number of checklists  (log10 transformed) containing each species increases through time, which is expected as the 
crowdsourced platform gains new observers. It does not represent an increase in the total number of hummingbirds. (B) In contrast, the percent 
of all checklists containing each species within regions where each occurs is declining for Black-chinned Hummingbirds, and increasing for Anna’s 
Hummingbirds, which may reflect changes in observer behavior, expertise, or geographic coverage through time. (C) After spatially binning the 
data, the number of unique grid cells in which each species is observed increases slightly through time, but is relatively flat in recent years, giving 
some confidence that the species’ locations have been adequately covered through the time frame and within the spatial area. (D) The number of 
days that the species was observed in each year is flat for Anna’s Hummingbird after 2008, indicating that they were observed every day in each 
subsequent year. In contrast, Black-chinned Hummingbirds show a strong increasing trend, which suggests a need to further explore the data to 
see whether it indicates increased observer effort in general, or at particular locations or times of the year, or if it represents a meaningful ecological 
trend in the occurrence phenology of the species
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an offset (a predictor with a regression coefficient = 1, so 
that a count-based model effectively models density or 
encounter rate, [136]). In some cases, rarefaction or resa-
mpling methods (i.e., oversampling or undersampling to 
a median value [124]) may be used to represent a simi-
lar sampling effort across space or through time. Variable 
sampling effort over space is often accounted for using 
covariates that are suspected to correlate with sampling 
effort, such as distance to the nearest urban center (e.g., 
[137]) or distance to road [68]. In some cases effort covar-
iates do not exist (e.g., iNaturalist [101]) and researchers 
must instead control for variable sampling effort  with 
other methods, such as using the number of non-target 
species detections as a way to estimate change in effort 
across space and time [138]. Another common approach 
used when fitting species distribution models is to sam-
ple background locations in a way that attempts to mimic 
sampling biases in the occurrence data [139, 140]. Alter-
natively, setting strict inclusion criteria may help to deal 
with variability by omitting extreme or outlier observa-
tions or spatial or temporal bins that do not meet a pre-
determined threshold for total number of occurrences.

Ultimately, variation in data and project structures 
makes interoperability across datasets challenging. A 
major goal for researchers should be to identify better 
ways to coordinate data collection efforts, to link data 
observations across different collection sites and plat-
forms, and to develop automated tools to make this pro-
cess accessible to researchers at different computational 
skill levels and from different subfields. Species distribu-
tion modeling represents one area of research that has 
developed methods to integrate different types of occur-
rence data (e.g. presence-only, presence/absence, and 
count), that might prove useful for aggregating occur-
rence data to infer population-level movements or the 
causes of those observed movements [131–133, 141, 
142]. Improved standards for data collection and project 
structure, and adherence to data sharing policies across 
institutional, national, and international boundaries 
would benefit the utility of occurrence data for move-
ment ecology [80], considering that animal movement 
research often requires monitoring at regional, continen-
tal, or global spatial scales.

Methods and models
Statistical methods
Population-level movement can be inferred from occur-
rence data in multiple ways: (1) A summary of predicted 
occurrence distributions at multiple points in time can 
be modeled to evaluate change (e.g., in the center or 
boundaries) over time, and (2) changes in the occur-
rence distribution can be directly modeled as a function 
of temporally changing explanatory variables. Statistical 

processes for inferring population-level movement from 
semi- and unstructured occurrence datasets and projects 
must be able to account for a high volume of data that 
contain variable quality, noise, recording anomalies, spu-
rious correlations and incidental endogeneity throughout 
[52, 143]. Incidental endogeneity is a genuine relation-
ship between predictor variables and the error term in 
a regression analysis (i.e., residual term is dependent on 
some of the predictors), and is common in observational 
data and in highly dimensional data that comes from 
multiple different sources, such as crowdsourced data 
[52, 112, 143]. Occurrence data also frequently violate 
common statistical assumptions of independence, sta-
tionarity, and Normality [40]. Spatial [144–146] and tem-
poral [147, 148] autocorrelation are common concerns. 
Additional challenges include finding ways to deal with 
multicollinearity (i.e., when an explanatory variable can 
be predicted by linear combinations of other explanatory 
variables [149, 150]) or overfitting due to excessive model 
flexibility (e.g., too many predictors or too flexible a rela-
tionship between predictor and response varaible) and 
accidentally masking the true effects. Generalized addi-
tive models (GAMs), and tree-based and other machine-
learning methods use cross-validation or penalization 
in an attempt to avoid overfitting. Even in the absence 
of multicollinearity and overfitting, models, including 
advanced tree-based or machine-learning methods, may 
still have low predictive ability when transferred to novel 
locations or scenarios [151]. Spurious correlations can 
occur, particularly when attempting to identify important 
species traits and environmental drivers of population-
level movements with large datasets [143]. Measurement 
errors can compound, particularly when predictor vari-
ables are remotely sensed and are thus only available on 
coarse grids or where they are spatially or temporally 
mis-aligned with occurrence records. Based on the above 
challenges and assumptions, there is a strong need to 
present levels of uncertainty associated with movement 
models based on occurrence data.

Modeling approaches should be tailored to the data 
and the specific research theme and question of a given 
project. Some modeling approaches use only occurrence 
records to describe movement paths or trajectories after 
vetting and controlling for bias in the occurrence data 
itself (Research Theme 1). Others rely on additional infor-
mation such as species traits, behavioral models, envi-
ronmental covariates, or anthropogenic factors (Research 
Themes 2–4). Below, we summarize recent analytical 
methods and approaches for describing or quantify-
ing population-level movement across the four research 
themes, with a focus on methods for Research Theme 1, 
describing population-level movement.
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Research theme 1: quantify population‑level patterns 
of movement
Quantifying population-level movement is an important 
step to integrating population-level and landscape-scale 
perspectives into movement ecology, which to date has 
largely focused on the movements of individuals. Cross-
ing or combining organizational scales to understand 
the changes to population-level measures of distribu-
tion that emerge from individual processes is a growing 
area of study that can provide new insights. Due to the 
nature of occurrence data, population-level movement 
is usually characterized using quantitative measures of 
the population’s range area, range edges, or range center, 
and changes in these characteristics through time. For 
populations undertaking directional movement through 
migration, or undergoing range expansion or range 
shifts, measures may describe location, direction, density 
of moving individuals (migration traffic rate, [152]), or 
speed (e.g., [28, 105]) over a time period, or compare dif-
ferences in location, density, or velocity across multiple 
time periods and across space (e.g., [153, 154]). Estimates 
of the timing of events, such as date of first arrival, cross-
ing a latitudinal or longitudinal demarcation, or reaching 
a predetermined number or density of observations (e.g., 
date when half the population has passed a sample point 
[105, 155]), may also be used to infer or evaluate popula-
tion-level movement.

One may characterize the central location and move-
ment of a population using coarse summaries of the 
occurrence data, such as the population’s centroid in 
latitude and longitude for a given time period (e.g. daily 
or weekly). The population centroid can then be com-
pared across time or thresholds that indicate movement 
[28, 105] or arrival at a predetermined area (e.g., [155]). 
Changes in centroids can be modeled using generalized 
additive mixed models (GAMM, [156]) or any regres-
sion-based approach, allowing users to estimate when 
migratory species begin or end directional movement 
(e.g., the onset of spring migration or the end of autumn 
migration). Further, measures of distance, speed, and 
direction of movement across seasons or years can be 
calculated from measures of population centrality. For 
example, population migration speed may be calculated 
by measuring the distance between daily centroids as km/
day (birds 28) or km/hr (caribou 99) traveled. For longer-
term occurrence datasets, these approaches are able to 
provide a description of population movement through 
annual life cycles, while accounting for variability among 
years using random effects (e.g., [134]).

Robust adaptive spatio-temporal models (AdaS-
TEM), a form of ensemble species distribution mod-
els, have been developed for use with eBird data. These 
models automatically select the appropriate sized stixel 

(spatio-temporal block of data) for inferring occurrence 
and abundance across a region based on the quantity of 
observations [124, 157]. These models do not measure 
movement, per se, but their estimates of occurrence, 
abundance, and range can be compared to evaluate how 
populations move based on shifting species distribution 
ranges and centers over the target time period. AdaS-
TEM models are useful because they are semi-paramet-
ric and can be used to generate hypotheses for migration 
dynamics and range expansion, or dispersal across 
dynamic species ranges, as is necessary especially for 
migratory species [67]. Estimates of ranges can be com-
pared across different times of the year, or across years, 
to infer population movement [124]. Scientists working 
with eBird data have led the development of many new 
statistical methods and tools for conducting movement 
research using occurrence data. These new approaches 
have been successfully applied to eBird data, which con-
tain a large amount of high quality, vetted occurrence 
records for birds, across broad geographic areas for more 
than 10 years [36, 66]. Nonetheless, some aspects of these 
eBird-inspired workflows and statistical methods could 
be reasonably adapted to other crowdsourced or occur-
rence datasets, different taxonomic groups, and other 
types of population movement research questions.

Rather than use a two-step approach (estimating spe-
cies distributions at different time points and then mod-
eling summary measures of these distributions, e.g. their 
centrality), it is appealing to consider more mechanistic 
approaches that model movement in terms of an advec-
tion–diffusion process [158]. This approach has been 
successfully applied to model the spread of Eurasian 
Collared-Dove (Streptopelia decaocto) using structured 
breeding bird survey data [55], but we are unaware of any 
successful applications of diffusion models to unstruc-
tured project survey data. The modeling approach of 
Wikle [158] is an example of a state-space model, with 
separate models for the underlying biological movement 
and observation processes. Alternative formulations of 
state-space models could be considered for quantifying 
population-level movements, but these methods require 
a significant understanding of advanced mathematics 
and access to high-level computing tools or high-per-
formance computing systems to fit these models to large 
datasets [159].

Research themes 2 and 3: evaluating the effects of species 
traits or external factors on movement
Once population movement has been characterized, 
a logical next step is to assess possible traits or exter-
nal factors driving movement Outputs from the pre-
vious step that describe population-level movement 
can be used to examine predictors or correlates of 
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movement and to test relevant questions or hypoth-
eses. Since population-level movements are often 
summarized using an aggregate measure of the popu-
lation (e.g., its center or range boundary), predictors 
should be expected to influence a significant number 
of individuals across a large spatial or temporal scale. 
Predictor variables frequently come from other data-
sets, for example, remote sensing products (e.g., NASA 
MODIS, LANDSAT, landcover or anthropogenic data-
bases, other species occurrence records) or climate 
reanalyses (e.g., Daymet, NCEP, ECMWF, ERA5), or 
trait databases [160–162]. These predictors can be 
analyzed with population-level movement metrics 
using generalized linear mixed models that account for 
different sources of variation in the data using combi-
nations of random and fixed effects [163, 164]. In some 

cases, machine learning based models (i.e., random 
forests) may be able to identify the relative importance 
of different predictors for movement and/or changes 
in occurrence (e.g., [154]).

Research theme 4: connect movement patterns 
with conservation or management schema
Most conservation applications will apply an under-
standing of how distributions and movement are influ-
enced by species-level or environmental covariates to a 
particular location or set of locations. In other words, 
Research Theme 4 requires the methods from Themes 
1–3, but with a further step to translate the science 
to decision-making, and to influence on-the-ground 
management. From a robust description of population 
movement, ideally including some analysis of species 
traits or external factors, it becomes possible to fore-
cast the effects of anthropogenic and environmental 
changes on future movement corridors or population 
distributions and to develop conservation and man-
agement strategies.

New ecological insights
Widespread occurrence data and new analytical 
approaches have allowed scientists to describe large-scale 
population movement, compare patterns among species 
or regions, and uncover potentially useful new strate-
gies for conservation in ways that have not always been 
possible, or may have been very constrained, using only 
tracking data from focal individuals. Using measures of 
population-level movement and its correlates, research-
ers have uncovered broad-scale patterns across species’ 
annual life cycles, and quantified general relationships 
between population movement, expansion, or contrac-
tion and species traits and environmental associations 
(Box 3).

Conclusions and next steps
The rapid growth in occurrence data as well as new com-
putational tools and statistical methods have opened the 
door to new possibilities for inferring population-level 
movement across broad spatial scales. While scientists at 
eBird and those specializing in analysis of WSR data have 
thus far led the development of datasets and new statis-
tical methods and tools for analyzing movement from 
occurrence records, many of these approaches could be 
reasonably adapted to other crowdsourced or occur-
rence datasets, different taxonomic groups, and other 
types of research questions addressing population-level 
movement. Population-level movement studies have pre-
viously focused on data from individual studies that rep-
resent a relatively small sample of larger populations, but 

Box  3 Examples of new ecological insights that have been 
gained in each thematic area with citations

Ecological insights

Research Theme 1—Quantify population-level patterns of movement

• Broad scale migration patterns, including looped migration, and 
directionality [28, 88, 134, 152, 165, 166]
• Migration timing, including when animals migrate and how quickly 
they migrate [47, 92, 105, 155, 167, 168]
• Estimates of range expansion or contraction, overall shift in center, 
area, or edges of range [56, 169]

Research Theme 2—Assess how species traits influence population-level 
movement

• Species traits impact range expansion [32] and range shifts during 
periods of rapid climate change
[170]
• Species traits (body mass, total migration distance) impact avian 
migration patterns [28]
• Species migratory traits affect sensitivity to migration phenology 
[171]

Research Theme 3—Study how population-level movement correlates 
with external factors

• Distance in range shift relative to temperature change, climatic debt 
[33], and climate velocity during periods of long-term climate transi-
tion [170]
• Importance of topography and tailwind for migration [87, 152]
• Environmental correlates of migration including atmospheric condi-
tions [172], temperature [62, 154], and ecological productivity [173, 
174]
• Assess whether species presence or absence across sites is affected 
by other species presence relative to timing of migration [46]

Research Theme 4—Connect movement patterns with conservation or 
management schema

• Association of migratory birds with protected areas and land-cover 
categories across the annual cycle [175, 176]
• Impacts to moving species from projected changes in climate and 
land use [177]
• Impacts to society from range movement or redistribution due to 
climate change [178]
• Potential environmental barriers to migration [153]
• Urban effects on occurrence of birds and mammals [179–181]
• Conservation planning based on movement and abundance across 
species’ annual cycles [182]



Page 14 of 19Supp et al. Movement Ecology            (2021) 9:60 

growing networks and increasingly available and inter-
operable data make larger collaborations and advances 
possible. Work that integrates different data sources and 
includes both individual- and population-level move-
ment metrics (e.g., [49, 183–185]) have the potential to 
create models that share parameters across data, loca-
tions, and spatial or temporal resolutions to provide a 
more comprehensive summary of animal movement. 
Further, process-based modelling using individual track-
ing datasets could prove useful for testing hypotheses 
derived from occurrence data and for developing insights 
into alternate mechanisms driving observed population-
level movement patterns.

As sensor networks for occurrence data mature, cur-
rent limitations will hopefully be addressed through 
increased data quantity, improved methods for estimat-
ing accuracy and bias, and enhanced metadata standards. 
Population-level movement studies are “data hungry”—
sufficient thresholds of the number of occurrences across 
space and time are needed to conduct a meaningful 
analysis—and not all datasets have the appropriate spa-
tiotemporal coverage or volume of records required to 
make reliable estimates of population movement. Finally, 
the development of common standards for occurrence 
datasets could aid in increasing data availability, acces-
sibility, and interoperability, as well as facilitating more 
robust adjustments for sampling effort and bias. For 
example, not all crowdsourced data repositories collect 
the necessary information to account for variation in 
observer skill or sampling effort, but an endeavor to do 
so would improve the utility of these data for movement 
ecology, and other scientific research. In some cases, 
related parts of sensor networks differ in their data acces-
sibility or the resolution at which key geographic, tempo-
ral, or taxonomic variables are recorded, which can make 
it challenging for researchers to use data across broader 
spatial scales.

Currently, population movement studies are strongly 
biased towards birds, followed by other types of aero-
fauna such as bats and insects, and are geographically 
biased to North America and Europe. These biases make 
clear the exciting opportunities for new research in this 
area. There is high potential for new ecological insights to 
be gained as data are collected across other parts of the 
planet and for other taxonomic groups. This review only 
examined research related to terrestrial animal move-
ment, but many of the same concepts and approaches 
can be applied to populations of aquatic and marine (e.g., 
[186, 187]), microbial [29], and plant taxa, which move 
over generations by natural or human-assisted disper-
sal (e.g., [188–190]. Using these data and new statistical 
methods to assess population-level movement can help 
support current work being carried out with individual 

tracking to determine how individual movement obser-
vations fit within the whole of a population or species’ 
trajectory and average patterns of movement. In addi-
tion, a population-level perspective can help shed new 
light on large-scale macro-movement patterns and asso-
ciations with biological and environmental correlates of 
movement that might not be as obvious when consider-
ing the variation between specific individuals that were 
sampled (Fig. 1). Finally, documenting population move-
ment may help scientists gain a clearer macroecological 
understanding of species occurrence, range expansion or 
contraction, migration, and needs for conservation and 
management in a changing world.
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