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Abstract 

Background: Migrations in temperate systems typically have two migratory phases, spring and autumn, and many 
migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, 
autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to 
identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route.

Methods: We analyzed autumn migrations of Arctic barren-ground caribou (Rangifer tarandus) as a series of persis-
tent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-
parameter movement model at the individual-level and estimated annual population-level parameters for weather 
covariates on 389 individual-seasons across 9 years.

Results: Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migra-
tory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental 
conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas 
temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in 
the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resulted in diverse 
environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns.

Conclusions: By analyzing autumn migration as a continuous process across the entire migration period, we found 
that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. 
This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more 
widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such 
a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their move-
ments throughout their annual cycle. These insights have implications for how long-distance migratory patterns may 
change as the Arctic climate continues to warm.
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“A heavy fall of snow appears to be the signal for the start [of autumn migration]; 
if, however, it is followed by a prolonged spell of good weather, the animals 
either remain scattered about the flat country near Sandy Lake, or they continue 
slowly and in a very irregular way towards their winter quarters. With the advent 
of cold or snows the movement invariably becomes more or less general, and is 
extremely precipitate when the cold is intense or the snowfall unusually heavy.” 

— A. Radclyffe Dugmore, 1913
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Background
Movement is a fundamental adaptation by animals and 
migration is a prime example thereof to improve fitness 
in environments characterized by seasonally predictable 
spatiotemporal fluctuations in conditions [1–3]. The spa-
tial scale of migration can vary drastically among or even 
within taxa. Regardless of distance, however, a complete 
migration trajectory is composed of a series of persistent 
and directional movements that emerge from a complex 
suite of physiological and behavioral adaptations [4, 5]. 
An integral component for understanding how migratory 
patterns arise is to identify the cues that migrants use 
in deciding when to initiate migration and how to move 
while en route.

For many species, spring migrations are tightly linked 
to seasonal resource pulses [6–10]. Under the Green 
Wave Hypothesis, migrants track fronts of emergent, 
high-quality vegetation to increase nutrient intake as 
spring progresses along the migratory route [11, 12]. 
Implicit to this paradigm of spring migration is that her-
bivores track these emergent vegetative fronts based on 
the perception of proximate resource quality, permit-
ting migrants to move with resource gradients along the 
migration route. This is applicable to both temperate 
migrants in spring and tropical migrants at the beginning 
of the wet season [13–15]. It does not, however, explain 
fall migrations in temperate migrants, some Arctic 
migrants in spring, nor the transition to the dry season 
for tropical migrants [e.g., 16]. Learning can influence 
migration and some migrants use their memory more 
than perception of proximal cues to navigate to distant 
destinations [17–20]. Regardless of the relative influence 
of reactive (perception-based) and proactive (learned) 
mechanisms in driving migration behavior, birthing gen-
erally coincides with peak resource quality [5, 21], and 
this likely constrains variability and enhances synchroni-
zation of spring migration timing and pace [16, 22, 23].

In contrast to spring migration, autumn migration 
has been less studied and lacks a common, driving life 
history event (i.e. birthing) across taxa. Unlike the dis-
tinct pulse of vegetation green-up of spring, senescence 
of vegetation in autumn is prolonged and marked by a 
gradual decline of forage quality [24]. Perhaps owing to 
the greater observed variability in autumn phenology 
patterns during this time, factors influencing autumn 
migration have received but a fraction of the attention in 
research on spring migration [25] and autumn migration 
research still lacks a consistent theoretical framework 
across taxa.

For temperate ungulate species, vegetative productiv-
ity, snow, and temperature influence autumn migration to 
varying degrees. For example, autumn migrations in roe 

deer (Capreolus capreolus) and red deer (Cervus elaphus) 
populations across Europe were influenced by decreased 
vegetation productivity but not snow events [26]. For 
red deer in Norway, most individuals left the summer 
range before the first snowfall, but snow appeared to 
trigger autumn migration for those that remained [27]. 
Moreover, migration initiation was associated with 
decreasing temperatures for females [27] but not with 
vegetation senescence for either sex [22]. Snow interacts 
with decreasing temperature in white-tailed deer (Odoc-
oileus virginianus) autumn migrations, such that the first 
snow to occur in colder temperatures greatly increased 
the likelihood of migration [28]. Snow and temperature 
have similar effects on the timing of autumn migration 
for mule deer [23, 29, 30]. These studies were all con-
ducted for short-distance migrants and it is unclear if 
these relationships hold for long-distance migrants.

Populations of barren-ground caribou exhibit the long-
est terrestrial, non-volant migrations on the planet, for 
which round-trip distances between seasonal ranges 
can reach 1,350 km [31]. Despite a long history of inter-
est in the drivers of autumn migration in caribou, con-
temporary research on the topic is surprisingly sparse. 
In 1913, the early naturalist Arthur Dugmore [32] specu-
lated that the winter’s first heavy snowfall and cold tem-
peratures initiated autumn migration for Newfoundland 
caribou based on local observations. Early fieldwork in 
Canada drew a connection between the first snowfall 
and autumn migration [33] and later work in Newfound-
land suggested that the first snowfall of 5–10 cm initiated 
autumn migrations [34]. Anecdotally, autumn migration 
for the Porcupine Herd in Alaska and far western Can-
ada was once observed to begin following an early season 
(August) snowstorm [35]. Many of these early field obser-
vations also note that autumn migrations slow down 
or pause altogether if the weather turns mild after such 
snow events, but resumed when temperatures decreased 
or snow began to accumulate again [32, 34, 35]. More 
recently, temporal variation in autumn migration for the 
George River and Leaf River Herds in northern Canada 
was linked to conditions en route, with earlier arrival at 
the winter range associated with deeper snow at the des-
tination [36]. A promising avenue of migration research 
is to precisely determine how long-distance terrestrial 
migrants, such as caribou, respond to experienced envi-
ronmental conditions throughout migration, given inher-
ent annual environmental variability and the dispersed 
nature of caribou groups in autumn [33].

Previous studies have typically treated autumn migra-
tion, and the initiation of it, as a single discrete event, 
and applied analyses designed to relate environmental 
covariates to the timing of the start and end of migrations 
[e.g., 23, 27, 37, 38]. This approach explicitly assumes that 
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once initiated, migration continues to its completion. Yet, 
many long-distance avian migrants [21], as well as migra-
tory ungulates such as mule deer [38], red deer [22], and 
elk (Cervus canadensis) [39], use stopovers (pauses along 
the migration route) to replenish reserves, sometimes for 
many weeks. A promising new concept that incorporates 
variability in movement along a complete migration tra-
jectory is “migratory pacing,” in which an individual con-
tinuously adjusts its behavior based on environmental 
conditions experienced en route [40]. Migratory pacing 
incorporates stopovers as an example of a distinct change 
in migration behavior in response to resources, while also 
incorporating more subtle changes in movement such as 
different movement rates. Green wave surfing in spring 
is an example of this behavior in ungulates, in which 
migrants pace migration to match the wave of spring 
resource quality [6, 10]. In contrast, how this concept 
applies to autumn migration in ungulates remains largely 
unexplored despite a long history of field observations 
and anecdotes suggesting a similar pacing-type pattern in 
many taxa. Recent developments in statistical movement 
models permit characterizing behavioral indices from 
GPS location data [41] and enables relating these behav-
ioral states to experienced environmental conditions [40, 
42].

We propose that a complete seasonal migration con-
sists of a series of persistent, directional movements 
(hereafter simply “migratory movements”), that may or 
may not be interspersed with bouts of non-persistent 
movement (akin to stopovers) occurring at the individ-
ual level [1, 5]. We test for effects of continuously vary-
ing environmental characteristics on autumn migratory 
movements evaluated as dynamic parameters of a cor-
related random walk movement model. We examine 
these metrics in the Western Arctic Herd, a popula-
tion of migratory, barren-ground caribou in northwest 
Alaska. We combine recently developed methods to 
test for effects at the individual level and scale these 
insights up for population-level inference [40, 43]. We 
hypothesize that (1) autumn migratory movements for 
caribou are a function of contemporaneous, experi-
enced environmental conditions, (2) migration is paced 
based on a continuous decision-making process, such 
that if conditions change, movements are accelerated, 
adjusted, or paused, and (3) these responses are highly 
consistent throughout the population and across the 
study period despite the widely disaggregated nature of 
caribou in autumn. As we show, environmental condi-
tions that are strongly affected by climate change alter 
migratory behavior, and we discuss our findings in rela-
tion to the potential for a continued change to alter 
long-distance terrestrial migrations in the Arctic.

Material and methods
Study population
We analyzed data from 175 individual collared cari-
bou from the Western Arctic Herd in northwest Alaska, 
which annually range from approximately 65°–71° N and 
166°–150° W. In autumn, the herd generally migrates 
from the arctic tundra of Alaska’s North Slope, through 
the rugged Brooks Range with peaks over 2000  m, to 
lichen-rich uplands and boreal forests south of the moun-
tain range where they spend the winter. Wintering areas 
vary by year and the herd is typically broadly dispersed 
at this time [44, 45]. Autumn migration timing varies 
by year as well, with a trend toward later migration in 
recent years and proportions of the population not fully 
migrating south [44, 46]. From 2009 to 2018, GPS col-
lars (Telonics, Mesa, AZ) were deployed on adult females 
using procedures approved by the State of Alaska Institu-
tional Animal Care and Use Committee (permits 2012-
031R and 0040-2017-40). Deployments occurred during 
autumn migration as caribou crossed the Kobuk River in 
Kobuk Valley National Park. Methods for collar deploy-
ment are described elsewhere [47, 48]. Most collars were 
set to record locations every 8 h, but some more recently 
deployed collars recorded locations every 2 or 4  h. For 
our analysis, the data were subsampled to 8-h location 
intervals for consistency across all individuals and years. 
During the study period, the herd size decreased from 
355,000 animals in 2009 [46] to 244,000 in 2019 [49].

We analyzed GPS data between August 15 and 
December 31 for 2010–2018, resulting in nine autumn 
migration periods. We used 389 individual-season 
datasets across these 9 years, ranging from 28 in 2010 
to 66 in 2016 (Additional File 1: Table  S1). Movement 
rates associated with insect avoidance in mid-summer 
are the greatest of the year [46, 50]; consequently, we 
used August 15th as the beginning date for the analysis 
period based on preliminary investigations of the data 
which suggested that insect harassment season could 
extend to mid-August. Winter is characterized by the 
slowest and most localized movements of the year, and 
migration is complete by the end of the year [46, 50], 
so we ended the analysis period at the end of Decem-
ber. We only used data for which the collar was active 
for the entire period, and thus excluded individual-
seasons where the individual died, was collared dur-
ing the migratory period, or for which the individual 
had less than half of the expected GPS locations due to 
missing collar data (often due to poor satellite network 
connectivity).

Movement model
To characterize the behavior of each caribou along 
its GPS movement track and understand how it was 
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related to contemporaneous environmental factors 
the individual experienced, we fit a continuous-time 
movement model with a dynamic behavioral parameter 
similar to that of Eisaguirre et  al. [40]. The movement 
process for the jth individual is given by:

where xj,i is a cartesian coordinate vector of the indi-
vidual’s location at time  tj,i and I is the identity matrix. 
The model estimates a continuous, time-varying latent 
variable γj,i ∈ [0,1]. Higher values of γj,i indicate persis-
tent, directional movements and reduced values indicate 
tortuous, encamped movements [40, 42, 51, 52]. We can 
therefore interpret higher estimated values of γj,i as an 
indicator of the degree of migratory behavior expressed 
along the trajectory. Within the model, γj,i is specified as 
a linear combination of environmental covariates associ-
ated with each location:

representing the effect of the environment on the ani-
mal’s movement pattern. Here, Zj,i is a vector that con-
tains the environmental covariates associated with each 
xj,i, and βj is a vector that weights the effects of those 
covariates on γj,i. Full model statement and details are 
provided in Additional File 2.

We estimated individual model parameters in a 
Bayesian framework with Hamiltonian Monte Carlo 
(HMC) using Stan version 2.19.1 [53], program R ver-
sion 3.6.2 [54], and the package “RStan” version 2.19.3 
[55]. The model was fit to each individual season with 
3 chains of 100,000 HMC iterations, including 50,000 
for burn-in, and thinned by 10 (see Additional File 3 for 
implementation). Since the initial stage of our analysis 
was based at the individual level, we scaled our infer-
ence up to the annual population level with recursive 
Bayesian computation using a second stage Markov 
chain Monte Carlo (MCMC) algorithm [43, 56–58]. We 
modeled the population-level coefficient βp,k for the kth 
covariate as:

We assigned an informative prior centered on zero to 
each βp,k to ensure that any apparent effects of environ-
mental covariates detected were relatively strong (see 
full model statement in Additional File 2). To ensure 
that our results were not heavily weighted by over-
representing winter movements in the dataset (that 
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is, movements that were made after migrations had 
ended), we repeated the analysis and fit models to a 
truncated movement time-series (August 15 to Novem-
ber 15) and compared these to the original results.

Environmental data
We attributed environmental variables to the caribou 
location data using the track annotation service Env-
DATA [59] on Movebank (www. moveb ank. org). For 
each location, we obtained time-specific point estimates 
for air temperature (°C), snow accumulation (meters), 
wind speed (m  sec−1), and standardized atmospheric 
pressure (Pa). These were derived from the North 
American Regional Reanalysis [60] and are produced at 
3-h intervals and 0.3 degree spatial resolution. We also 
included an index of vegetation greenness, the Normal-
ized Difference Vegetation Index (NDVI), as measured 
from the MODIS satellite platform for each location 
with a 250-m resolution [61]. NDVI was derived from 
16-day composites and the best image within that time 
span was used as the value. We set NDVI values to 0 
for all locations which had measured snow accumula-
tion, because changes in snow cover drives a large part 
of the seasonal NDVI patterns in Arctic environments 
[62]. Bilinear interpolation was used for all attributes in 
Env-DATA and weather reanalysis data have been found 
to have good agreement with weather station data col-
lected in the area of the herd [63, 64]. Correlations 
between environmental variables were all less than 0.7 
and all variables were standardized to mean zero and 
unit variance prior to fitting the model.

To test our hypothesis that migratory behavior is a 
function of experienced environmental covariates, we fit 
one model that included the main effects for each envi-
ronmental covariate. We included an interaction between 
temperature and snow depth to test for potential addi-
tional effects of snow at a given temperature [28]. The 
expected value of movement persistence was thus mod-
eled as:

We  interpreted multiple years of 90% credible intervals 
that did not overlap zero for each year of the popula-
tion-level model to indicate effects of the environmen-
tal covariate [65, 66]. To visualize our results at the 

(4)

E(logit(γj,i)) = Z
T
j,iβ j = β0 + β1 · Temp(xj,i)+ β2 · Snow(xj,i)

+ β3 · Temp(xj,i) · Snow(xj,i)+ β4 ·Wind(xj,i)

+ β5 ·NDVI(xj,i)+ β6 · Pressure(xj,i).

http://www.movebank.org
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landscape scale, we downloaded environmental rasters 
of these given covariates at three characteristic peri-
ods (early-, middle-, and late-autumn) in 2010. We then 
mapped expected movement patterns over the landscape 
using the equation γ̂i = logit−1(Zi

T β̂p) , where β̂p repre-
sents the posterior mean for the population-level coef-
ficients and Zi

T the vector of observed environmental 
conditions in each pixel at a representative date and time. 
Stan and R code used to implement our approach is pro-
vided in Additional File 4.

Results
Across all 9 years, the combination of snow and tempera-
ture had the strongest influence on autumn migratory 
movements, with estimated coefficients of the interac-
tion term and 90% credible intervals (CI) that were con-
sistently above zero (Fig. 1). Chain mixing and potential 
scale reduction statistics ( ̂R ) less than 1.01 for all 389 
individual season models indicated convergence to the 
posterior distribution [53].

Interpretation of the main effects of temperature and 
snow on migratory movement was nuanced due to the 
consistently significant interaction term (Fig.  1, Addi-
tional file 1: Table S2) and was best interpreted through 
comparing the effect to migratory movement across 
a range of both temperature and snow values (Fig.  2). 
When snow was absent, decreasing temperatures alone 
resulted in increased migratory movement for all but 

one year, suggested by higher γj,i at low temperatures 
(Fig.  2). Accumulating snow depth modulated this rela-
tionship between temperature and migratory move-
ment, such that snow accumulation at relatively warmer 
temperatures in autumn resulted in higher γj,i. This was 
pronounced for the first snow event and early accumu-
lation of snow depth, which were consistently associated 
with elevated γj,i, such that individuals typically exhib-
ited more persistent movements within 10 days of early 
season snow events (Fig. 3; Additional File 1: Figure S1). 
Notably, migratory movements were clearly altered as 
environmental conditions moderated in the days follow-
ing such events, and animals often exhibited more local-
ized, slower movements (decreased γj,i) after reaching 
snow-free areas farther south (e.g., Fig. 3; Additional File 
1: Figure S2). Snow appeared to become a hindrance to 
movement as it accumulated, such that deep snow (e.g., 
more than 40 cm) and cold temperatures (such as − 20 to 
– 30 °C) were associated with the most encamped move-
ment behaviors (Figs. 2, 3). For 8 of 9 years, the relation-
ship between temperature and γj,i inverted at an average 
depth of 12 cm (range 2 [2010]–21 cm [2017]).

Wind, NDVI, and air pressure had less pronounced 
and more variable effects on migratory movements. 
Windy conditions were generally associated with 
increased migratory movements, as the estimated 
coefficient was positive for 7 out of 9  years (2010 and 
2012–2017). However, evidence was weak as of those, 
only two had 90% CIs that did not include zero (Fig. 1; 
Additional File 1: Figure S3). Increased migratory 

Fig. 1 Annual estimated population-level coefficients (points) and 90% credible intervals (bars) for the effect of environmental variables on 
migratory movements ( ̂γi ) from the dynamic-parameter correlated random walk model. Environmental variables were standardized and the model 
was fitted to individual tracks of caribou data from the Western Arctic Herd, Alaska, 2010–2018

Fig. 2 The effect of temperature at three different snow depth levels for each year from the population-level fit of the dynamic-parameter 
correlated random walk movement model fitted to caribou location data of the Western Arctic Herd, Alaska, 2010–2018. For each year, the 
predicted effect of temperature (x-axis) on the movement parameter ( ̂γi ; y-axis) is plotted across 3 levels of snow depth (no snow = 0 cm, average 
snow = 11 cm, and deep snow = 46 cm). Each black curve is given by the equation γ̂i

(l) = logit−1(Zi
T β̂

(l)
p ) for the lth Markov-Chain Monte Carlo 

iteration (termed posterior realizations), and the red line indicates the mean. Annual plots are cut off to the observed range of values for each year

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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movements were generally associated with decreasing 
NDVI values, with negative coefficients in 6 years (90% 
CI below zero for 3 years; Fig. 1; Additional File 1: Fig-
ure S3). Barometric pressure exhibited a generally posi-
tive but again weak effect on migratory movements, 
with 6  years of positive coefficients and of those, two 
with a 90% CI that did not include 0 (Fig. 1; Additional 
File 1: Figure S3). These patterns among environmen-
tal variables and migratory movement were consistent, 
albeit less pronounced, when models were fitted to the 
truncated timeseries data that ended Nov. 15 (Addi-
tional File 1: Figure S4 & Figure S5).

When visualizing the spatiotemporally explicit move-
ment patterns predicted from our model, the result was 
extremely heterogenous expected migratory movements 
that were highly dependent upon where animals were 
located on the landscape and were temporally dynamic 
(Fig. 4). The degree of expected migratory movement at a 
given time and place was a function of the entire suite of 
environmental factors experienced by individuals. Once 
snow depth increased to mid-winter depths, movements 
were predicted to become encamped and homogeneous 
in the majority of the range regardless of how far south 
individuals were (Fig. 4) as individuals ceased migration 
and entered an overwinter movement regime.

Discussion
More than a century after Dugmore [32] postulated 
that accumulating snow, decreasing temperatures, 
and changes in weather affected autumn migration in 
caribou, we used modern technology and statistical 
approaches to quantify the dynamic response by cari-
bou to localized snow and temperature conditions and 
determined that migration is continuously reassessed 
throughout the migratory period. Whereas the response 
to these variables scaled to a consistent population-level 
pattern (Figs.  1, 2), the dispersion of individuals across 
a wide geographic area resulted in notable variation in 
migratory behavior among individuals for any given time 
due to differences in conditions across the region (Fig. 4). 
Our findings suggest that autumn migration can be envi-
sioned as the recently introduced concept of migratory 
pacing, in which individuals continuously adjust migra-
tory behavior based on experienced in situ environmen-
tal conditions [40], rather than a single discrete action 
(i.e. “on/off”). Migratory pacing can include stopover 
behavior and unifies a set of ideas describing migration 
patterns across the spring and autumn legs of the com-
plete migratory cycle. While many temperate migrants 
pace spring migration with the flush of resource quality 
across the landscape (i.e. ‘green wave surfing’) [6–10], 

Fig. 3 Environmental conditions experienced by an individual caribou of the Western Arctic Herd (A) and movement track from Aug 15 to Jan 1, 
2010 (B). Panel A indicates the snow depth (blue) and temperature (gold) at each location as extrapolated from the North American Reanalysis 
Model (National Centers for Environmental Prediction 2005). Estimated migratory movement ( ̂γi ) for the individual is illustrated in the bottom bar 
from dark blue (low persistence and localized movements) to yellow (high persistence and directional movements). Panel B illustrates the measured 
caribou movements for the same time period and are colored by the same color scheme for migratory movement as in panel A. The diamond and 
circle indicate the start and end, respectively, of the longest migratory movement in both panels
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senescence in autumn is a gradual and protracted decline 
of vegetation quality that largely ends when snow accu-
mulates [62]. In contrast to spring migration, our results 
indicate that migrants largely pace autumn migration 
with respect to indicators of the approaching winter, 
similar to the ‘frost wave’ suggested by Xu and Si [67]. 
For caribou, these findings are congruent with early field 
observations which speculated such a mechanism [32, 34, 
35].

Our findings have two important implications for the 
migratory patterns of populations. The first is that expe-
rienced environmental conditions across a population 
prior to and during migration may exhibit a wide range 
depending on the spatial distribution of individuals. 
This is pronounced in caribou, as they are typically dis-
persed in late summer [33, 68, 69], and this is especially 
true for the Western Arctic Herd [44, 46] (Fig. 4). Sec-
ondly, individuals respond to proximate environmental 
cues in a common manner despite this widespread spa-
tial dispersion of groups. This finding is similar to that 
for golden eagles (Aquila chrysaetos), which use ther-
mal uplift as a flight subsidy along a variety of autumn 
(and spring) migration routes [40], as well as elk herds 
in the Greater Yellowstone Ecosystem, which rely on 
similar environmental cues for migration timing despite 
ranges being spatially distinct [70]. Our findings indi-
cate that caribou generally exhibit a common behavioral 
response to similar proximate weather conditions (snow 
and temperature) they experience. One notable com-
monality was elevated movement persistence after the 
first snowfall event of the season (such as the individual 
depicted in Fig. 3), which appeared to be representative 

of the general response we found in our population-
level results. The dispersed distribution of the herd in 
late summer results in individuals experiencing differ-
ent environmental conditions which, in turn, leads to 
different individual-level migratory decisions. These 
then scale up to the observed variability and asynchrony 
in migratory patterns (this study) observed at the pop-
ulation level [44, 46]. More generally, the consistent 
population-level responses to environmental cues that 
we detected suggests that variability in environmental 
conditions experienced across a population’s distribu-
tion in a given year can explain why autumn migrations 
can exhibit such wide variability in timing across many 
taxa [22, 23, 71].

Assessing the influence of the environment along the 
entire migration trajectory provides a mechanistic link 
between broad-scale weather patterns and migration, 
suggesting that changes in the prevailing climate may 
result in changes to migratory patterns. In the range of 
the Western Arctic Herd, the climatic trend has been 
for warmer autumns [72] and has coincided with pro-
gressively later autumn migrations over multiple dec-
ades [44, 46, 73]. Shifts in autumn migration timing 
have been linked to environmental trends in other spe-
cies as well, such as for Chukchi Sea Beluga whales 
(Delphinapterus leucas) that now migrate later as sea-
sonal sea-ice formation has become delayed [74]. Tim-
ing of elk autumn migration in the Greater Yellowstone 
Ecosystem was found to be highly plastic from 2001 to 
2017 and corresponded to changes in snow patterns for 
many of the herds [70]. Understanding how climate influ-
ences migration behavior is important for predicting 

Fig. 4 Predicted migratory movement ( ̂γi ) for the range of the Western Arctic Herd given the environmental conditions at three time 
periods − 8/27 (A), 9/27 (B), and 12/17 (C) − and corresponding population-level model results for individuals in 2010. Dark colors indicate reduced 
movement persistence (low γ̂i ) and yellow indicate persistent movement (high γ̂i ). Caribou locations are displayed in each panel and colored by 
day, and the legend bar along the bottom indicates the range of γ̂i and the corresponding values at the observed caribou locations
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how long-distance migrant populations may or may not 
respond adaptively to future climate change [75]. This is 
especially pertinent for rural Arctic subsistence commu-
nities, whose cultural identity and way of life date back 
more than 10,000  years and rely on harvesting caribou 
during migration [76]. Given the rapid changes currently 
being observed in the Arctic and even greater ones pre-
dicted with climate change [77, 78], our results indicate 
that caribou migrating long-distances, and perhaps other 
long-distance migrants, are highly plastic in their deci-
sion of when and at what pace to migrate, and that fur-
ther migration delays could occur if the warming trend 
continues.

In the later part of the season we analyzed (i.e., late 
November–December), we found that movement per-
sistence consistently reached its lowest levels as win-
ter conditions set in, which were characterized by deep 
snow and cold temperatures. This aligns with docu-
mented increased costs of winter movements, given that 
the energy expenditure to move through snow increases 
exponentially with increased sinking depth (and thus 
snow depth) [79]. Winter movement rates progressively 
diminish throughout winter [50] and concurrently, meta-
bolic rates and energy requirements in caribou decrease 
[80]. These are some of the numerous adaptations by 
northern species to survive the long winter months [81] 
and highlight the importance of incorporating snow met-
rics in studies of animal movements in northern ecosys-
tems [82, 83].

Our primary finding that migratory movements are a 
response to dynamic and localized temperature and snow 
patterns is consistent with previous research for spe-
cies exhibiting shorter and less demanding migrations, 
such as mule deer [23, 29, 30], white-tailed deer [28, 84], 
elk [70], and red deer [27]. We also found evidence that 
vegetation and meteorological conditions can influence 
migratory movements to lesser degrees. For most years 
observed, we found a negative relationship between 
NDVI and migratory movements, indicating caribou 
travelled more persistently as vegetation senesced and, 
conversely, were more localized when animals encoun-
tered greener vegetation (Fig. 1; Additional File 1: Figure 
S3). This relationship was not likely to have been driven 
by snow accumulation (when NDVI values became zero) 
given the variability in response across years we observed. 
Our finding that autumn migration timing is related 
to fall senescence is similar to European populations of 
roe and red deer, for which migration timing is linked to 
decreasing plant productivity, as measured by NDVI [26]. 
Under the migratory pacing concept, individuals may 
delay not only the start of autumn migrations but also 
slow down or pause migration en route (stopover) if they 
encounter improved foraging conditions. This is similar 

to mule deer, for which stopover sites have higher NDVI 
values than neighboring migration corridors [38]. Such a 
tactic could prolong access to good foraging conditions 
before winter sets in and reduce competition on win-
ter areas by delaying arrival as long as possible. We also 
found that migratory movements were more persistent 
on windy, high pressure days in some years, suggesting 
that migration speed may be modulated by fair weather 
conditions. Other, less predictable meteorological condi-
tions not considered here, such as rain on snow events, 
are known to influence caribou movements as well [85]. 
Autumn migration has been observed during warm 
weather in the past [47], similar to an anomalous year in 
our data, and this highlights the need for further research 
into autumn migration.

Conclusions
By treating migration as a series of directional and persis-
tent migratory movements and classifying these as a con-
tinuous metric, we show that decreasing temperature and 
increasing snow depth influence when and how caribou 
migrate in autumn. These quantitative findings align with 
the early observations of naturalists and field biologists that 
have accrued over the last century. Because individuals of 
this caribou herd are dispersed across a large spatial extent 
in autumn, variability in experienced conditions results in 
a wide range of observed migration patterns. This mecha-
nism of pacing autumn migration based on indicators of 
the approaching winter is analogous to the more widely 
researched mechanism of spring migration, when many 
migrants pace migration with a resource wave, and high-
lights the different environmental stimuli migrants have 
adapted to respond to throughout their annual cycle.
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