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The scent of fear makes sea urchins go 
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Abstract 

Background: Classic ecological formulations of predator–prey interactions often assume that predators and prey 
interact randomly in an information-limited environment. In the field, however, most prey can accurately assess 
predation risk by sensing predator chemical cues, which typically trigger some form of escape response to reduce 
the probability of capture. Here, we explore under laboratory-controlled conditions the long-term (minutes to 
hours) escaping response of the sea urchin Paracentrotus lividus, a key species in Mediterranean subtidal macrophyte 
communities.

Methods: Behavioural experiments involved exposing a random sample of P. lividus to either one of two treatments: 
(i) control water (filtered seawater) or (ii) predator-conditioned water (with cues from the main P. lividus benthic 
predator—the gastropod Hexaplex trunculus). We analysed individual sea urchin trajectories, computed their heading 
angles, speed, path straightness, diffusive properties, and directional entropy (as a measure of path unpredictability). 
To account for the full picture of escaping strategies, we followed not only the first instants post-predator exposure, 
but also the entire escape trajectory. We then used linear models to compare the observed results from control and 
predators treatments.

Results: The trajectories from sea urchins subjected to predator cues were, on average, straighter and faster than 
those coming from controls, which translated into differences in the diffusive properties and unpredictability of 
their movement patterns. Sea urchins in control trials showed complex diffusive properties in an information-limited 
environment, with highly variable trajectories, ranging from Brownian motion to superdiffusion, and even marginal 
ballistic motion. In predator cue treatments, variability reduced, and trajectories became more homogeneous and 
predictable at the edge of ballistic motion.

Conclusions: Despite their old evolutionary origin, lack of cephalization, and homogenous external appearance, 
the trajectories that sea urchins displayed in information-limited environments were complex and ranged widely 
between individuals. Such variable behavioural repertoire appeared to be intrinsic to the species and emerged 
when the animals were left unconstrained. Our results highlight that fear from predators can be an important driver 
of sea urchin movement patterns. All in all, the observation of anomalous diffusion, highly variable trajectories and 
the behavioural shift induced by predator cues, further highlight that the functional forms currently used in classical 
predator–prey models are far from realistic.
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Background
Prey organisms have evolved a variety of antipreda-
tor strategies to enhance their probability of survival in 
the face of predation. These adaptations may reduce 
the probability of actually encountering a predator, or 
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the probability of consumption once the prey has been 
detected [1]. Most prey are capable of accurately assess-
ing predation risk [2], some of them using multiple pred-
ator detection mechanisms—including visual, chemical 
and/or tactile cues. However, chemical detection appears 
to be the most reliable way to perceive the presence of 
current and past predators [3], in the latter case provid-
ing advanced warning of danger [4], and thus allowing 
the possibility of avoiding the risk of being preyed upon 
altogether. Predator chemical detection occurs in ter-
restrial, freshwater and marine organisms [3]. Once the 
cue has been detected, a behavioural reaction is usually 
triggered. In the case of early predator detection, avoid-
ance (e.g. refuge seeking) is among the most common 
responses, but when the attack is inevitable or already 
initiated, the most common strategy is to reduce the 
probability of capture by escaping [5]. Since antipreda-
tor behaviour, however, incurs in a cost in the form of 
lower access to resources and/or lower metabolic rate, 
it would be a selective advantage to assess the need to 
escape or shelter in an accurate manner to optimally bal-
ance potential risks (predation) with potential gains (food 
intake) [6]. Antipredator behaviour, therefore, is a typi-
cal example of how an animal needs to rapidly integrate 
information from its environment to produce an appro-
priate behavioural response that is constrained by the 
animal’s body condition, biomechanics, and information 
processing capabilities [5].

Classic ecological formulations of predator–prey inter-
actions (e.g. Lotka–Volterra equations) often assume 
that predators and prey interact randomly, in a manner 
similar to molecules in an ideal gas undergoing Brownian 
motion [7, 8], and therefore the probability of encounter 
depends mostly on their respective concentrations (den-
sities). In this idealised scenario, neither of them receives 
external information about each other’s position, and 
predation only occurs when the movement trajectories 
of both predator and prey coincide. Although a lot of 
research has focused on generalising how predators find 
and process prey once found (following [9]), the inclu-
sion of individual-level movement patterns in popula-
tion models is still not common. One of the few examples 
where the differences in mobility and speed have been 
incorporated in predator–prey models showed that pred-
ator foraging mode (mobile vs sit-and-wait) controlled 
the success of prey antipredator behaviour, which influ-
enced community stability [10]. Also, in a recent paper, 
Hein and Martin [11] found that accounting for the 
‘information limitation’ that a predator experiences when 
looking for prey can stabilize predator–prey systems, 
preventing the collapse of predator and prey populations. 
However, both papers mainly focus on predator move-
ments, while still assuming that prey move at random. To 

the best of our knowledge, prey escaping strategies have 
rarely been incorporated in predator–prey models [10, 
12, 13].

To date, a lot of research has focused on the initial 
stages of prey escape using instantaneous measurements, 
such as the escape direction, speed or acceleration [5, 
14]. Theoretical models show that on the basis of the rel-
ative speeds of predator and prey, a single optimal escape 
trajectory can be predicted [14, 15]. However, these pre-
dictions on prey responses to predator strikes, do not 
accommodate one of the main properties postulated for 
escape trajectories—their unpredictability, which seems 
fundamental for preventing predators from learning a 
repeated pattern of prey response [16]. Often, escape 
responses not only involve a rapid stereotyped retreat 
phase (rapid relative to the predator’s movement), but 
also some degree of so-called ‘protean behaviour’ with 
unpredictable escape patterns [1]. While it is true that 
in many taxa, the first milliseconds after predator attack 
are crucial for predator escape [17], this is not always the 
case. For example, when escaping from pursuit preda-
tors (those that do not ambush and strike their prey), the 
complexity of the escape response during an extended 
period of time can be a key element for understanding 
the factors that lead to surviving predation [5]. Thus, 
to account for the full picture of escaping strategies, we 
need to follow not only the first vital milliseconds post-
predator attack, but also the entire escape trajectory. In 
addition, to bring together behaviour with population 
dynamics, we need to characterise not only predator 
search behaviour (as successfully done by Hein & Martin 
[11]), but we also need to understand that prey escaping 
trajectories might deviate from the ideal gas models of 
animal encounter [8, 18].

Sea urchins (class Echinoidea) are a group of marine 
invertebrates with an old evolutionary origin [19, 20] 
and lack of cephalization [21] that play a very important 
functional role in marine benthic ecosystems (e.g. some 
behaving as key herbivores [22]). They display several 
adaptations for sensing their environment and for detect-
ing potential predators. Some species display behavioural 
responses to dark objects and/or light [23–25], while oth-
ers also display chemosensory abilities to detect preda-
tors [26–30], or detect cues from damaged conspecifics 
[29–32]. However, the study of the responses to these 
stimuli in terms of movement patterns is generally lim-
ited to the comparison of the heading angles before-after 
detection and distance travelled (e.g. [29, 31]); whereas 
their response to predators, in terms of changes in their 
trajectories and diffusive properties, has not been stud-
ied, to the best of our knowledge.

Here, we explore under laboratory-controlled condi-
tions the long-term (minutes to hours) heading angles, 
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trajectories, diffusive properties, and predictability of 
movement of the sea urchin Paracentrotus lividus (Lam.). 
P. lividus is widely recognised as a key species in Medi-
terranean subtidal macrophyte communities, given its 
role as one of the main grazers in rocky reefs and Posi-
donia oceanica seagrass meadows [33–35]. We assess the 
role of predator chemical cues in conditioning average 
sea urchin movement behaviour and discuss the conse-
quences of the emerging diffusive properties on preda-
tor–prey encounter rates and on potential prey survival. 
Behavioural experiments involved exposing a sample of 
P. lividus sea urchins to either one of two treatments: (i) 
control water (filtered seawater) and (ii) predator-con-
ditioned water, that held overnight 6 individuals of the 
main P. lividus benthic predator—the slow-moving gas-
tropod Hexaplex trunculus (L.). Given that the chemical 
stimulus used in this experiment was diffuse, we expect 
uniformly distributed heading angles both for control 
and predator treatments. If sea urchins perceive predator 
cues, we also expect straighter or faster trajectories at the 
predator trials. Finally, it is not clear whether sea urchin 
escape responses to predator cues will turn out to be pre-
dictable, if the priority is to depart from the predator, or 
unpredictable, if the intention is to mislead the predator, 
avoiding it from learning the optimal escape trajectory 
[1].

Methods
Specimen collection and care
On the day before the start of each round of trials, we 
collected Paracentrotus lividus sea urchins (test diam-
eter without spines 3.6 ± 0.05 cm, mean ± SE) and preda-
tory gastropods Hexaplex trunculus (ca. 8 cm in length), 
from a shallow (2–4 m) macroalgal-dominated habitat in 
Blanes (41° 40’ N 2° 48’ E; 41° 44’ N 2° 57’ E). We kept 
all sea urchins and gastropods in aquaria with the same 
light cycle and similar temperature as those in the field 
and with a continuous flow of seawater (mean salin-
ity 35.8 ± 0.2 psu, mean temperature 23.1 ± 0.5°C). All 
urchins and gastropods were fed ad libitum (macroalgae 
and live sea urchins respectively, although gastropods 
did not consume any of the sea urchins offered) and were 
tested within a week of collection. We ran some initial 
trials with animals differing in acclimation duration. We 
observed that animal speeds and displacements from the 
initial point decreased in animals that had been kept in 
the holding aquaria for more than a week (likely a caging 
effect). As a result, we decided to run the trials between 
2- and 5-days post-capture, thus, after a minimum of one 
day of acclimation in the holding aquaria. Such first trials 
allowed us to confirm that the responses that sea urchins 
displayed while in the experimental arena were similar to 
those shown when displaced in the field: they typically 

move away from the initial point if they do not find a ref-
uge right away; otherwise, when they find a refuge, they 
might not move for hours. Each sea urchin was randomly 
allocated to one of two treatments, namely: control—
with filtered seawater; and predator treatment—with fil-
tered seawater that had been conditioned with chemicals 
from the predatory gastropod H. trunculus. We routinely 
tested the capacity of sea urchins to reverse when put 
upside-down (with animals that would not be tested on 
that day), to check their health status. We considered the 
animals were not in good condition when they were not 
capable of overturning themselves in less than 5 min, in 
which case they were discarded.

Experimental arena
The experimental arena consisted of a metallic circular 
tank (3 m diameter) lined with plastic. A diffuse fluores-
cent light source was placed 3 m above the arena result-
ing in a mean downwelling irradiance on the arena’s floor 
of 7.7 ×  1018 photons  m−2   s−1 (measured with a HOBO, 
Amplified Quantum Sensor, model SQ-200, Onset Com-
puter Corporation, USA). Despite attempts to ensure the 
arena was homogenously lit, we found some heterogene-
ity in downwelling irradiance (Additional file 1: Fig. S1). 
However, such heterogeneity was not enough to bias sea 
urchin directionality (see Fig. 1). Three metres above the 
arena, we mounted a Nikon D80 (Nikon, Japan) digital 
SLR camera with a 17 mm lens that allowed a full view 
of the experimental area. We set the camera in time-
lapse mode with a 30-s interval between each image, 
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Fig. 1 Sea urchin final and initial distribution of heading angles in 
the control (n = 29) and predator (n = 21) treatments. The distribution 
of angles was considered uniform according to Rayleigh tests both 
for initial control (z = 0.16, P-value = 0.46), initial predator (z = 0.23, 
P-value = 0.32), final control (z = 0.21, P-value = 0.29) and final 
predator trials (z = 0.19, P-value = 0.48)
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since preliminary testing had shown that this time inter-
val allowed sea urchins to move approximately one body 
length between photographs. This temporal resolution 
is lower than that of other works using the same model 
species [36], but similar to studies interested in sea 
urchin movement behaviour over longer periods of time 
(e.g. [37, 38]). In fact, due to the small velocities of sea 
urchins, finer scale resolution might lead to results being 
largely affected by recording error.

Experimental procedure
On each day of trials, the arena was filled (water col-
umn = 20  cm) either with filtered seawater at the same 
temperature and salinity as that of the holding aquaria 
(control seawater), or with seawater at the same tem-
perature and salinity conditions but conditioned with 
chemical cues from the predatory gastropod Hexaplex 
trunculus (L), which is considered the main benthic 
predator of P. lividus sea urchins in the north-western 
Mediterranean [39]. Predator-conditioned seawater was 
obtained by allowing six individuals of the predatory 
gastropod to roam overnight in a tank containing the 
water that would be used for the experiment the follow-
ing morning. Control seawater or predator-conditioned 
seawater was changed (the arena was refilled) on each 
day of trials, and at the end of each day of trials the arena 
was thoroughly scrubbed with a brush and clean seawa-
ter. Each sea urchin was tested only once. At the begin-
ning of each trial a sea urchin was placed at the centre of 
the arena, and we considered the trial had ended when a 
sea urchin had approached to within 10 cm of the edge. 
While it would have been more realistic to slowly add 
control or predator-conditioned water to tanks with plain 
seawater containing urchins that had been allowed to 
settle down beforehand, we chose feasibility and experi-
mental control, at the expense of similarity to field condi-
tions. After the trial, the arena was scrubbed to reduce 
the potential for trail following and the sea urchin was 
returned to the holding aquaria and never used again. 
Twenty-nine sea urchins were used in control seawater 
and 21 for the predator treatment. Such difference in the 
replication level for each group was due to the availability 
of sea urchins, technical problems while running experi-
ments (e.g. camera not taking the photos at the desired 
rate, unexpected visits to the lab while the experiment 
was running, etc.) and time constraints.

Image and trajectory analysis
A total of 3337 images were taken. These were trans-
ferred to a computer and the x and y coordinates of 
each urchin were obtained by means of a Matlab script 
using the image processing toolbox. These coordinates 
were then transferred to R [40] and analysed with the 

package adehabitatLT [41], which computed step dis-
placements in X and Y coordinates of the trajectory 
(frame rate = 30  s). We calculated the initial angle 
headings for each sea urchin with the arctangent of the 
vector between the first and fifth steps, while the final 
angle headings were calculated using the vector con-
necting the first and last steps (see diagram in Addi-
tional file 2: Fig. S2). We used the fifth step to calculate 
the initial headings, because we considered that by 
then, sea urchins would have had enough time (> 2 min) 
to reorient themselves after being moved from the 
holding tank to the experimental arena.

For each sea urchin, we also calculated its mean 
speed—by estimating speed for every step, and then 
averaging the values for the entire trajectory—and a 
measure of path tortuosity, the straightness index. The 
straightness index  (Is) is a dimensionless number that 
ranges from 1 (maximum straightness) to 0 (maxi-
mum tortuosity), which is computed as the ratio of the 
Euclidian distance between the initial and final point 
of the trajectory and the sum of Euclidian distances 
between pairs of points separated by a given time (i.e., 
window width). Since different windows of time result 
in different  Is [42], we calculated this index for a range 
of window widths. Comparisons between control and 
predator treatment were consistent regardless of win-
dow width and, thus, here we only present  Is calculated 
using a window of 1 step (30 s).

We also analysed the spreading (diffusive) proper-
ties of sea urchin trajectories in each treatment. We 
used a general numerical approach estimating the  qth 
order long-range correlations of the sea urchin dis-
placements [43]. Specifically, the module of incre-
ments of two-dimensional displacements is ∥∆Xτ∥ 
≡ √(xt+τ −  xt)2 +  (yt+τ −  yt)2, where τ is the tempo-
ral increment, and  (xt,  yt) and  (xt+τ,yt+τ) are respec-
tively the positions of a sea urchin at time t and t + τ. 
The moments of order q (q > 0) of the module of two-
dimensional displacements depend on the temporal 
increment τ as

The exponents ζ(q) were estimated as the slope of the 
linear regressions of ∥∆Xτ∥ vs. τ in log–log plots [43] 
(see Additional file 3: Fig. S3 for two examples of such 
estimation). To avoid autocorrelation and hence viola-
tion of independence (the most important assumption 
of linear regression, Zuur et  al. 2009), we calculated 
∥∆Xτ∥ using log-spaced temporal increments (τ), to 
obtain equally spaced observations in log–log plots, as 
recommended in [44]. The moment function ζ(q) char-
acterises the statistics of the random walk ∥∆Xτ∥ of P. 

(1)
〈

� �Xτ �q
〉

∼ τ ζ(q)
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lividus regardless of the scale and intensity [45], and 
the related diffusive properties. Low and high orders of 
moment q characterise small, frequent displacements, 
and large, less frequent displacements, respectively. 
The mean (q = 1) and the variance (q = 2) are not suf-
ficient to quantify the behaviour of probability density 
functions. A complete description requires an infinite 
number of moments (of q’s), hence the use of the whole 
function ζ(q) instead of a single exponent [43]. Each 
individual-level function ζ(q) was plotted along with 
the results for the Brownian motion (dashed line in 
Fig. 3b,d) and ballistic motion (dotted line in Fig. 3b,d). 
With this analysis we quantified the nature of the dif-
fusive properties of sea urchin trajectories and discern 
whether these were subdiffusive (extremely restricted 
movement patterns), Brownian (local movements rep-
resented by short displacement lengths and tortuous 
trajectories), superdiffusive (including a large range 
of displacement lengths, accounting for both local 
and extensive movements), or ballistic (straight-line 
motion). Unfortunately, sea urchin trajectories were 
not long enough to analyse step length distributions, 
which can be used to discern the mechanisms underly-
ing the diffusive anomalies observed.

We finally calculated the entropy of individual sea 
urchin trajectories as a measure of unpredictability 
of urchin movement patterns. It has been shown that 
unpredictability of animal trajectories can increase when 
escaping from predators to prevent them from learning 
a stereotyped evasion strategy (e.g. [46]). However, such 
strategy might be dependent on predator foraging mode. 
To calculate entropy for each individual sea urchin tra-
jectory, we first discretised the relative angles between 
steps by binning them using the function cut() in R. 
After several trials, and seeing that the results did not 
change overall, we selected a bin width of 0.05 radians. 
We then calculated entropy as the Shannon H index of 
the resulting vector of relative angle bin counts (R pack-
age ‘entropy’) [47].

Data analysis
Given that the predator chemical cue was diffuse in this 
experiment, we expected uniformly distributed head-
ing angles (initial and final) both for control and preda-
tor treatments. A non-uniform distribution of the angles 
would be indicative of experimental artefacts (e.g., 
urchins orienting in response to room features, light het-
erogeneity, etc.). Thus, we used the Rayleigh test on the 
absolute initial and final heading angles for control and 
treatment sea urchins to ensure the animals were not ori-
enting to stimuli other than the predator cues. The null 
hypothesis of the Rayleigh test is a uniform distribution 
of the heading angles, and the alternative hypothesis is a 

unimodal distribution with unknown direction (but with 
directionality). Rayleigh tests indicated that Paracentro-
tus lividus sea urchins displayed a uniform distribution 
of both the initial and final heading angles, both for the 
controls and the treatment with predator chemical cues 
(Fig.  1). Thus, sea urchins did not orient towards any 
unexpected feature of the arena or the room for any of 
the treatments (Fig.  1). The required statistical assump-
tions (i.e., unimodality and von-Misses distribution) were 
tested and fulfilled in all cases.

To assess if sea urchins increased the speed and 
straightness of their movement patterns when a preda-
tor cue was detected, we analysed the response vari-
ables ‘mean sea urchin speed’ and ‘straightness index’ 
with linear models using the fixed factor ‘treatment’ (2 
levels: control, predator). We also checked whether the 
random effect ‘day of trial’ was needed to account for the 
shared variability among those individuals tested on the 
same day. However, this random effect did not improve 
the model according to the Akaike Information Criterion 
[48], and was therefore not included in the final models. 
Normality and homoscedasticity were assessed (visual 
inspection of residuals) and fulfilled for both mean sea 
urchin speeds and straightness index.

To assess if sea urchin diffusive properties differed 
in presence of predator chemical cues, we used a Gen-
eralised Least Squares (GLS) model with the response 
variable ‘scaling exponents of the function ζ(q)’ as a 
function of the fixed factor ‘treatment’ (2 levels: control, 
predator). We used a GLS instead of a plain linear model 
because we observed a clear violation of homoscedas-
ticity assumption between treatments. Data exploration 
revealed a much greater variance in the diffusive proper-
ties of the control group than that of the predator treat-
ment group (Levene’s Test p value = 0.001). To account 
for such treatment-level heterogeneity, we included the 
factor ‘treatment’ as weights in the GLS model, using the 
function varIdent() from the package nlme in R [48, 49]. 
This function allows the variance to vary between predic-
tor levels, i.e., between control and predator treatments 
in our case. Again, we tested the need for including the 
random effect ‘day of trial’ for this response variable, but 
the Akaike Information Criterion did not support its 
inclusion in the final model (there was no shared vari-
ance among the individuals tested on the same day) [48]. 
Normality and homoscedasticity were assessed (visual 
inspection of residuals) and fulfilled after including the 
treatment-level variance structure as weights.

Finally, we assessed whether the predictability of 
trajectories differed between sea urchins moving in 
a featureless arena and sea urchins exposed to preda-
tor chemical cues. To this end, we fitted a linear model 
with the response variable ‘entropy of the distribution 
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of relative angles’ (continuous) and ‘treatment’ as a fixed 
factor (2 levels: control, predator), plus the continuous 
fixed variable ‘scaling exponents of the function ζ(q)’, to 
check if there was a relationship between the predict-
ability of sea urchin trajectories (directional entropy) 
and sea urchin diffusive properties (scaling exponents 
of the function ζ(q)). We also checked whether the ran-
dom effect ‘day of trial’ was needed to account for the 
shared variability among those individuals tested on the 
same day. However, this random effect did not improve 
the model according to the Akaike Information Crite-
rion [48], and was therefore not included in final models. 
Normality and homoscedasticity were assessed (visual 
inspection of residuals) and fulfilled.

Each individual sea urchin was always considered a 
replicate, in all analyses. Despite the number of replicates 
between control and treatment groups differed, current 
implementations of linear and generalised least squares 
models can perfectly solve the equations for unbalanced 
designs [50]. All analyses were performed in R v3.6.0 [40], 
and the R scripts used to run all of the analyses reported 
are available as a GitHub repository (available here [51]).

Results
Trajectories from sea urchins subjected to predator 
cues were straighter and faster, on average, than those 
of controls. In effect, the average straightness index and 
speed of the predator treatment group increased by 28% 
and 34% respectively, compared to the control group 
(Table 1, Fig. 2a,b). The scaling exponents of the  qth order 
moments (ζ(q)) allowed us to carefully assess the diffu-
sive properties of individual sea urchin trajectories (see 
Figs.  2c, 3b,d, and Additional file  3: Fig. S3, Additional 
file 4: S4). In Figs. 2c and 3b,d, the steepest slopes (high-
est slope coefficients) correspond to marginal ballistic 
trajectories (ballistic motion occurring at ζ(q) slope = 1, 
dotted line in Figs. 2c, and 3b,d), while the gentlest slopes 

correspond to Brownian motion (when ζ(q) slope = 0.5, 
dashed line in Figs. 2c, and 3b,d). Finally, slopes between 
the Brownian and ballistic realms, correspond to super-
diffusive trajectories. The diffusive properties of sea 
urchin trajectories under control conditions (i.e., in a fea-
tureless arena) ranged widely, whereas in the presence of 
predator cues, the range of sea urchin spreading behav-
iour was drastically limited (note the different shape 
of the violin plots in Fig.  2c and compare Fig.  3b with 
Fig.  3d). Trajectories from control urchins ranged from 
normal diffusion (Brownian motion) to marginal ballis-
tic trajectories (Figs. 2c and 3a,b); while most of the sea 
urchins from the predators treatment displayed strongly 
superdiffusive or nearly straight-lined motion (marginal 
ballistic motion, Figs.  2c and 3c,d). Such differences in 
the variability of sea urchin spreading behaviour between 
treatments, were further highlighted by the fact that the 
best selected model evaluating the spreading behaviour 
of sea urchin trajectories as a function of treatment, 
required a specific variance structure to account for het-
eroscedasticity (i.e., different variance) among treatment 
levels (see methods, Fig. 2c).

In addition to being less variable in terms of diffu-
sive properties, trajectories from sea urchins exposed 
to predator cues were also more predictable: the direc-
tional entropy of individual sea urchin trajectories from 
the predator treatment decreased by 13%, on average, 
compared to controls (Fig.  4a, Table  1). Logically, the 
directional entropy of sea urchin trajectories decreased 
with steeper slopes of the scaling exponents’ function 
(ζ(q)), meaning that as sea urchin trajectories varied from 
Brownian motion towards marginal ballistic, the predict-
ability of their movement patterns increased (Fig.  4b, 
Table 1). Predictability appeared to increase faster from 
slope coefficients ranging from 0.8 to 1 (from superdif-
fusive to ballistic) than from coefficients ranging from 0.5 
to 0.8 (Brownian to superdiffusive) (Fig. 4b).

Table 1 Summary of the linear models performed to test whether the dependent variables ‘mean speed’, ‘straightness index’, 
‘scaling exponents ζ(q)’ and ‘directional entropy’ of sea urchin trajectories were different for the control (n = 29) and predator (n = 21) 
experiments. df, degrees of freedom

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response variable Model type Effect df Statistic P

Straightness index  (Is) Linear model Treatment 1 F = 4.66 0.036 *

Residuals 48

Mean speed Linear model Treatment 1 F = 11.35 0.001 **

Residuals 48

Slope of ζ(q) General Least Squares Treatment 1 χ2 = 9.48 0.002**

Directional entropy Linear Model Treatment 1 F = 7.02 0.011*

Slope of ζ(q) 1 F = 38.52 0.000***

Treatment*Slope ζ(q) 1 F = 2.03 0.161

Residuals 46
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Discussion
A priori, few would expect the movement behaviour 
of sea urchins to be intrinsically complex, and rapidly 
adjustable to available contextual information. Our 
results, however, suggest the opposite: Paracentrotus livi-
dus sea urchins showed complex movement behaviour 
in information-limited environments (our control tri-
als), with a wide range of variability between individuals, 
while this variability was constrained as soon as informa-
tion became available (predator chemical cues). Despite 
their old evolutionary origin (Echinoidea first appeared 
in the Ordovician) [19, 20], lack of cephalization [21], 
and homogenous external appearance, the trajectories 
that sea urchins displayed in information-limited envi-
ronments ranged from Brownian motion to superdiffu-
sion, and even marginal ballistic motion. Such variable 
behavioural repertoire appeared to be intrinsic to the 
species and emerged when the animals were in an infor-
mation-limited (unconstrained) environment (control 
trials). Indeed, signatures of superdiffusive motion have 
been described for Late Cretaceous-Eocene trace fos-
sils attributed to the echinoid ichnospecies Scolicia [52]. 
An ancient origin of such complex movement properties 
might suggest it is an intrinsic optimal behaviour for a 
broad range of heterogeneous landscapes (e.g. [53–56]). 
In contrast, as soon as some information became avail-
able (i.e., predator cues), inter-individual variability 
dropped, and trajectories became more homogeneous 
and predictable at the edge of ballistic motion. While the 
study of escaping strategies has progressed, until now 
most studies have focused on the initial phases of escape 
[14], but not on extended periods of time nor on analys-
ing long individual trajectories (in the case of our trials, 
duration ranged from 8 to 104 min, see Additional file 4: 
Fig. S4, Additional file  5: S5). Our full-scale trajectory 
analysis with and without background predator chemical 
cues, allows for a more comprehensive understanding of 
the escape response of sea urchins.

One of the most unexpected results from this study 
has been the realization that despite their homogene-
ous morphology—we deliberately controlled sea urchin 
size—sea urchin behaviour was very variable in an infor-
mation-limited (unconstrained) environment (control 
conditions). It was unexpected, indeed, because behav-
ioural variation is often associated with morphologi-
cal [57] or environmental variation [58, 59], something 
that our control trials were minimizing. Sea urchin dif-
fusive patterns (Fig.  3a,b) were particularly variable 
within the control group. In the absence of environmen-
tal cues, the observed variability suggests the existence 
of complex intrinsic behaviour, including anomalous 
diffusion. The extent to which the observed variability 
arose from individuality is difficult to gauge by the fact 
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that our experimental approach focused on compar-
ing a population of control vs. conditioned sea urchins, 
instead of focusing on the individuals per se (i.e. trialling 
each urchin several times). Future studies should focus 
on individuals to effectively address the potential role 
of individual behaviour on population dynamics. Our 
experiment was neither designed to assess if such inter-
individual behavioural differences were consistent over 
time or across contexts, and hence if they can be consid-
ered different ‘animal personalities’ [58, 59]. Neverthe-
less, the mere existence of such behavioural variation is 
the foundation on which natural selection can operate 
[60], potentially leading to adaptative solutions (as long 
as behavioural diversity implies genotypic diversity). 
A surge of recent research points to the importance of 
intraspecific variation for ecological and evolutionary 
processes [58, 61]. While traditionally most studies had 
focused on genetic variation concerning physiologi-
cal, morphological, or other traits closely related to per-
formance; the consequences of individual variation on 

behaviour have started to receive more attention in the 
last decade, becoming a hot topic [58, 62]. This is not sur-
prising given that behaviour is a key factor mediating the 
interactions of individuals with their environment [63] 
and among themselves. In fact, individual behavioural 
variation has been shown to allow populations to cope 
with a broader range of environmental conditions, even 
influencing population stability and persistence [58, 59].

Conversely, sea urchins exposed to predator cues nar-
rowed their range of spreading behaviours around ballis-
tic-like movement patterns and low directional entropy, 
hence displaying more predictable escape trajectories. 
This contrasts to the avoidance reactions of many other 
prey organisms that tend to display more unpredictable 
behaviour when escaping from predators [5, 14, 16, 46, 
64]. Such discrepancies might be explained by differ-
ences in predator foraging modes or strategies, which 
can determine the success of prey escape responses 
[10, 46]. For example, maintaining high velocities can 
be useful for prey that are hunted by predators using a 

0

500

1000

0 500 1000 1500
x

y
A

0

2

4

6

8

0 2 4 6 8
q

ζ(
q)

B

0

500

1000

0 500 1000 1500
x

y

C

0

2

4

6

8

0 2 4 6 8
q

ζ(
q)

D

Fig. 3 Analysis of empirical sea urchin trajectories. a, c Control (blue paths) and predator treatment (orange paths) sea urchin trajectories on an x, y 
coordinate system (n = 29 and n = 21, respectively). b, d Results from analysing control (blue lines) and predator treatment (orange lines) sea urchin 
trajectories using the qth order structure functions framework. Dotted and dashed lines in (b, d) correspond to the theoretical outputs of a ballistic 
(scaling exponents ζ(q) = q) and a Brownian trajectory (scaling exponents ζ(q) = q/2), respectively. Line transparency has been scaled by slope 
coefficient—solid colours indicate higher slope coefficients and increasing transparency indicates lower slope coefficients. The units of X and Y axes 
in (a) and (c) are pixels



Page 9 of 12Pagès et al. Mov Ecol            (2021) 9:50  

simple pursuit strategy [64]. On the other hand, preda-
tion based on ballistic interception [64] requires the 
prediction of prey movement to plan a predator attack. 
Therefore, increasing the unpredictability of prey trajec-
tories likely increases the chances of evading a predator’s 
ballistic interception [46]. In our case, since the predator 
cues to which urchins were subjected came from a slow-
moving gastropod (H. trunculus) that hunts in a sim-
ple pursuit strategy [65, 66], an increase in urchin path 
unpredictability might not confer a selective advantage. 
In contrast, an increase in speed and straightness, lead-
ing to an almost ballistic spreading, might be the most 
advantageous strategy for outrunning a gastropod; hence 
the low unpredictability and overall convergence of 
most individuals tested to this escape strategy. Straight-
line motion responses have been observed in other sea 
urchins escaping from sea stars (also pursuit hunters), for 
example, and may be a survival-enhancing response [67]. 
Ballistic trajectories maximise the distance an organism 
can travel in a given amount of time [15]. Similar escap-
ing trajectories have been reported for pelagic plankton 
species (e.g. dinoflagellates [68] and copepods [69]). It 
has also been previously reported for molluscs, crusta-
ceans, echinoderms, amphibians, reptiles, and mammals 
[3, 70]. The same strategy would not be appropriate if the 
predator was a faster-moving fish, and further empirical 
work should explore the kind of strategy that sea urchins 
would take under such circumstances. Model simula-
tions show that the relative speeds of predator and prey 

are key to determine the most efficient predator forag-
ing mode [13]. The same should be true looking at the 
predator–prey interaction from the viewpoint of the 
prey: prey antipredator behaviour is likely to change as a 
result of the relative speeds of predator and prey. In fact, 
sea urchins typically avoid fast predators (e.g., fish) alto-
gether by hiding from them in crevices during daylight 
and foraging mostly at night. Such an avoidance strat-
egy would not work for pursuit predators that can pen-
etrate the refuges [10], such as the gastropods from our 
experiments.

Paracentrotus lividus’ most remarkable functional trait 
might be its appetite for algal fronds and seagrass shoots, 
making it a key herbivorous species in Mediterranean 
seagrass meadows and algal communities [35, 71]. As a 
result of its functional importance, its movement ecol-
ogy has been a matter of interest since the eighties, when 
Dance’s [72] meticulous observations showed that this 
species’ activity peaked at night, and that most animals 
made short-scale displacements. Other studies would 
later show that P. lividus’ locomotor performance scaled 
with sea urchin size, that light could induce a negative 
phototactic response on this species [36], that their home 
range and displacement activity were different between 
protected areas and adjacent unprotected sites [73], and 
that movement behaviour differed between wild and 
captively-bred animals [74]. Our results add complex-
ity layers to the suite of the potentially adaptive behav-
ioural traits of this species. While freely moving (with no 
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fear), overall movement covers broadly the superdiffusive 
regime which may be optimal to explore large-scale het-
erogeneous (patchy) and sparsely distributed resources 
[75, 76], such as the algae growing on the rocky reefs 
where these animals forage. In macroinvertebrates with 
limited visual abilities, chemical cues are one of the most 
important sources of information, and here we show, 
for the first time for this species, that predator chemi-
cal cues can induce strong changes in the species fun-
damental behavioural repertoire and variability. Given 
our model organism is considered a key herbivore in 
Mediterranean rocky reefs, it is reasonable to think that 
predator-induced behavioural changes may contribute to 
the observed differences in sea urchin control of macro-
phyte communities in protected vs. unprotected areas in 
the Mediterranean (resulting in so-called behaviourally-
mediated trophic cascades, see for example [30]). Behav-
iourally-mediated trophic cascades have been widely 
reported when prey-species modulate their behaviour 
as a consequence of predator presence—the so-called 
non-consumptive effects of predators on prey (e.g. [77]). 
It was reasonable to expect a response from sea urchins 
subjected to very high concentrations of predator cues, 
when placed in an arena without acclimation. Further 
field research should determine the capacity of this spe-
cies to also adapt their movement behaviour in  situ. 
We have some hints that this is indeed possible, even if 
the concentration of predator chemical cues in the field 
are likely lower than those experienced by our labora-
tory specimens. In situ observations show that P. lividus 
increase the time allocated to sheltering in response to 
the presence of predatory fish [73]. Similarly, P. lividus 
inside marine protected areas (with high predator pres-
sure) reduce their grazing activity in response to higher 
predation risk [30].

Conclusions
The finding of intrinsically complex movement patterns 
in sea urchins, particularly in information-limited envi-
ronments, and the instantaneous malleability of this 
behaviour in response to chemical cues is intriguing as 
echinoids lack cephalization and complex sensory organs 
[21], and have a very old evolutionary origin dating back 
from the Ordovician (> 400  Ma) [19, 20]. Our results 
highlight that fear of predators is an important driver of 
sea urchin movement patterns. While some movement 
patterns have been evolutionarily selected for optimising 
the search of food, other movement patterns might have 
been selected as optimal for escaping predators. In this 
context, the variability observed in sea urchin escape tra-
jectories in a featureless environment (our control group) 
might be the foundation on which natural selection 
works to lead to survival-enhancing escaping strategies. 

All in all, the observation of anomalous diffusion, indi-
vidual variability and the behavioural shift induced by 
predator cues, further highlight that the functional forms 
currently used in classical predator–prey models, which 
assume that both predator and prey behave as molecules 
in an ideal gas (Brownian motion) are far from realistic 
[8], with obvious influences on predator–prey population 
dynamics [18] and species coexistence [11]. Future mod-
elling work should aim at incorporating the observed 
complexity in prey movement patterns, to make current 
predator–prey models more realistic.
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Additional file 1. Fig. S1. Downwelling irradiance measured at different 
sectors of the experimental arena’s floor. Light was measured using 
a HOBO device (Amplified Quantum Sensor, model SQ-200, Onset 
Computer Corporation, USA). Note that we found some heterogeneity in 
downwelling irradiance as shown by the different lower-case letters above 
each box, which correspond to significant differences according to Tukey 
HSD post-hoc tests.

Additional file 2. Fig. S2. Diagram showing the method used to calculate 
the initial (αi) and final (αf) heading angles. Note that we allowed five time 
steps before calculating the initial angle, to allow the sea urchin to settle 
after being moved from the holding tank.

Additional file 3. Fig. S3. Two examples (A, C, E, and B, D, F, respectively) 
illustrating the steps required to estimate the exponents ζ(q), from the 
slope of the linear trend of ∥∆Xτ∥ vs. τ in log–log plots. See methods for 
details. (A) and (B) correspond to the raw trajectories of two different sea 
urchins; (C) and (D) correspond to the ∥∆Xτ∥ vs. τ log–log plots, from 
where the exponents were estimated; and (E) and (F) are the final func-
tions of scaling exponents ζ(q) plotted alongside the results of the ballistic 
motion (dotted line) and Brownian motion (dashed line). Shaded areas 
correspond to the 95% confidence intervals around the slope estimates 
from the linear regression. Note that on panels (C) and (D), τ’s (on the 
x-axis) are equally spaced as a result of using log-spaced τ’s when calculat-
ing sea urchin displacements, which then improves the compliance with 
the assumptions of linear regression.

Additional file 4. Fig. S4. Individual trajectories of the sea urchins from 
control trials. The number on the lower right corner of each panel cor-
responds to the total duration of the trajectory (since the frame rate we 
used was 30 seconds, the total number of steps for each trajectory can 
be calculated as Total_Duration*2). Line transparency has been scaled by 
slope coefficient—solid colours indicate higher slope coefficients and 
increasing transparency indicates lower slope coefficients. The units of X 
and Y axes are pixels.

Additional file 5. Fig. S5. Individual trajectories of the sea urchins from 
predator trials. The value on the lower right corner of each panel cor-
responds to the total duration of the trajectory (since the frame rate we 
used was 30 seconds, the total number of steps for each trajectory can 
be calculated as Total_Duration*2). Line transparency has been scaled by 
slope coefficient—solid colours indicate higher slope coefficients and 
increasing transparency indicates lower slope coefficients. The units of X 
and Y axes are pixels.
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