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Abstract

Background: Identifying the behavioral state for wild animals that can’t be directly observed is of growing interest
to the ecological community. Advances in telemetry technology and statistical methodologies allow researchers to
use space-use and movement metrics to infer the underlying, latent, behavioral state of an animal without direct
observations. For example, researchers studying ungulate ecology have started using these methods to quantify
behaviors related to mating strategies. However, little work has been done to determine if assumed behaviors
inferred from movement and space-use patterns correspond to actual behaviors of individuals.

Methods: Using a dataset with male and female white-tailed deer location data, we evaluated the ability of these
two methods to correctly identify male-female interaction events (MFIEs). We identified MFIEs using the proximity
of their locations in space as indicators of when mating could have occurred. We then tested the ability of
utilization distributions (UDs) and hidden Markov models (HMMs) rendered with single sex location data to identify
these events.

Results: For white-tailed deer, male and female space-use and movement behavior did not vary consistently when
with a potential mate. There was no evidence that a probability contour threshold based on UD volume applied to
an individual’s UD could be used to identify MFIEs. Additionally, HMMs were unable to identify MFIEs, as single
MFIEs were often split across multiple states and the primary state of each MFIE was not consistent across events.

Conclusions: Caution is warranted when interpreting behavioral insights rendered from statistical models applied
to location data, particularly when there is no form of validation data. For these models to detect latent behaviors,
the individual needs to exhibit a consistently different type of space-use and movement when engaged in the
behavior. Unvalidated assumptions about that relationship may lead to incorrect inference about mating strategies
or other behaviors.
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Background
Animal movement is a critical component of many indi-
vidual- and population-level processes, such as space-use
(e.g., [46]), gene flow (e.g., [14]), disease dynamics (e.g.,
[28]), range expansion (e.g., [7]), and population dynam-
ics (e.g., [51]). Inference on animal movement is typically
obtained by monitoring time-indexed locations from
animal-borne sensors, and our ability to obtain precise
estimates of these locations over a long period of time
and at a fine-temporal scale has become logistically eas-
ier and more cost effective over time [13, 58, 62, 66].
Along with a proliferation of datasets containing pos-
itional data on individual animals, researchers have de-
veloped a wide variety of tools and statistical models to
visualize, quantify, and predict animal movement and
space-use [37]. Some of these methods focus on a spe-
cific aspect of movement ecology, which is the identifica-
tion of the underlying, latent, behavioral state of an
individual that results in variation in movement and
space-use quantities [29]. Behavioral state identification
allows researchers to estimate when an individual was
engaged in a behavior (e.g., resting, foraging, exploring,
transiting, excursions, dispersal) and variables that may
contribute to the display of one behavior over another
(e.g., [17, 23, 48, 49, 57, 67]).
Given the proliferation of methods for behavioral state

identification, we foresee researchers using these
methods to identify increasingly complex behavioral
states that are important for understanding an animal’s
ecology. For example, mating-related movement strat-
egies are an important component of an individual’s life-
time reproductive success and fitness [24], although
studies that link fitness directly to movement strategies
are rare [52]. Knowing the timing and location of mating
events can indicate which search strategies are successful
and provides insight into the fitness trade-offs necessary
for reproductive success [26]. However, classifying be-
havioral states using location data is difficult without
supporting data about the resources (e.g., mates) that are
related to movement behavior [33]. In addition, previous
research has found that the current suite of methods for
identifying latent behavioral states may not match the
true behavioral state [5]. The combination of rich
location-based datasets, accessible but complex statis-
tical methods, and the absence of supporting data for
validation purposes can create the perfect storm for a
mismatch between the desired inference and the limita-
tions of the data and statistical model.
White-tailed deer are a model species to evaluate

methods for characterizing mating-related movement
strategies because they are highly mobile and physically
large enough to support global positioning system (GPS)
collars that monitor movement over long periods of time
and at a fine temporal scale. As scramble competitors,

physical traits of males are weakly correlated with repro-
ductive success [18, 36], suggesting mate search efforts
are critical to successful reproduction and fitness [40].
Several search strategies have been identified for each
sex using an individual’s search intensity (size or propor-
tion of home range used during the mating season) and
movement rate (m/hr) (e.g., [35, 60, 65]). Low movement
rates and small home ranges suggest a female sit-and-
wait strategy, which is in contrast to the female excur-
sion strategy, a potential form of female mate choice,
where movement rates and home range sizes are greater
as females occasionally travel outside the home range
[16, 39, 60]. As scramble competitors, male white-tailed
deer movement strategies are influenced by the number
and behavior of competing males and the probability of
encountering a female [35, 65]. When there is a low
density of females and travel time between females is
high, males should reduce their movement rates and
focus their activity in the portions of their home range
that are in close proximity to females (resident strategy;
[26, 65]). When travel time between females is low males
may increase movements to increase encounters with fe-
males (roving strategy; [65]).
At the discovery of a potential mate, male white-tailed

deer may engage in multiple behaviors to increase their
reproductive success. White-tailed deer form tending
bonds where the male isolates with the female until the
end of estrus, during which time mating likely occurs
(tending; [1, 2, 32]), although the male may be displaced
by another male. However, our knowledge of the behav-
ior exhibited during tending bonds is limited to studies
on captive deer [19]. In systems where estrus is not syn-
chronized and receptivity is difficult to predict, it may be
advantageous for males to engage in a roving strategy
[65]; in white-tailed deer it has been hypothesized that
males may engage in roving behavior but revisit known
females to check their estrus status during rut (revisita-
tion; [25]). Given the difficulty of making field observa-
tions of mating-related behavior, there is interest in
using location-only data to infer behavior related to mat-
ing strategies (e.g., sit-and-wait/resident, excursion,
tending, revisitation).
Due to logistical constraints, inference on mating

movement behavior is often limited to data from a single
sex and/or the occurrence of a mating event is unknown
[59]. For example, revisited focal areas (identified using
the 30% probability contour from a utilization distribu-
tion) from male-only location data have been hypothe-
sized to reflect areas that contain potentially receptive
females [25]. These males may be mirroring the space-
use of resident females, whose home-ranges are typically
smaller than males, particularly during the mating sea-
son [4, 34], but it is unknown if males interacted with fe-
males in those focal areas. From female-only location
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data, female excursions outside of the home range (iden-
tified using the 95% isopleth from a utilization distribu-
tion) were inferred to increase encounters with males
and mating success [39], which can be validated with es-
timates of conception date (e.g., [60]). When information
is only obtained on a single sex, however, hypotheses
about mate interactions rely on strong assumptions
about how space-use and movement characteristics rep-
resent mating behavior. We believe these strong assump-
tions need to be validated before we can infer mating
behavior from movement characteristics of individuals
alone.
Using fine-scale, concurrent location data from both

sexes, we evaluated whether two commonly used move-
ment analyses, utilization distributions (UDs) and hidden
Markov models (HMMs), could be used to differentiate
mate-interaction from non-mate-interaction behavior in
white-tailed deer. We were motivated to evaluate the
ability of UDs to detect mate-interaction behavior be-
cause they have been used previously as a method for
defining mate-search behavior using single-sex location
(e.g., [26, 39, 60]). While we have not seen HMMs used
explicitly for the purpose of identifying mate-interaction
behavior, they are increasingly being used by ecologists
to determine behavioral movement states, which is likely
due to their accessibility to ecologists through R pack-
ages such as moveHMM [50] and momentuHMM [47].
For each method, we used the location of male-female
interaction events (MFIEs) to determine if the observed
interactions fell within areas of consistent UD volumes
or within a consistent behavioral state. Consistency of ei-
ther method to detect MFIEs would be evidence that
space-use or movement varied in a predictable way be-
tween times when males or females were with or with-
out a potential mate.

Methods
Study area
We monitored deer in four study areas in Pennsylvania,
United States, where seasons were characterized by cold
winters (mean temperature − 4.4 °C) and humid sum-
mers (mean temperature 20.5 °C) [54]. Two study areas,
Susquehannock North (SN) and Susquehannock South
(SS), were located in Susquehannock State Forest in Pot-
ter County. Our study area was contained within the
Appalachian Plateau physiographic region with plateaus
at approximately 800 m elevation interspersed with
drainages dropping to 220m [15]. The area was predom-
inately forested and dominant tree species were red
maple (Acer rubrum), sugar maple (Acer saccharum),
black cherry (Prunus serotina), and American beech
(Fagus grandifolia) [3]. Two additional study areas were
in Rothrock (RR) and Bald Eagle (BE) state forests. Lo-
cated in Centre, Mifflin, and Huntingdon counties, RR

and BE were within the Ridge and Valley Physiographic
province with topographic features that consisted of
long, parallel ridges and valleys along a northeast-
southwest axis, elevation ranging from 400 to 700 m
above sea level [15]. Predominately forested, dominant
tree species were red and white oak (Quercus spp.), red
maple, black birch (Betula lenta), black gum (Nyssa syl-
vatica) and hickory (Carya spp.). The oak-hickory for-
ests contained an understory layer of ericaceous shrub
species (Vaccinium spp., Gaylussacia spp., and Kalmia
latifolia). White-tailed deer density on our study areas
ranged from 4 to 10 deer/km2 [64].

Animal capture and data collection
We captured deer using rocket nets and Clover traps
from January to April, 2013–2016 [30]. We followed
protocols approved by The Pennsylvania State University
Institutional and Animal Care and Use Committee
(Protocol No. 47054). We fitted deer with a GPS satellite
collar (GPS Plus, Vectronic Aerospace, Berlin, Germany)
programmed to obtain a location every 1 h. All deer in
this study were ≥ 2.5 years of age.

Data analyses
Identifying male-female interaction events
We identified MFIEs using GPS locations from male and
female deer within the same study area. During the rut,
male deer tend a female for up to 72 h, during which
time mating likely occurs [19]. It is also possible that a
male will find a female (or group of females) that has
not entered estrus and, instead of tending, will revisit
areas where the female was located assess her receptivity
[25]. Therefore, times when male and female deer are in
close proximity to one another can indicate probable
male-female interaction events. We also defined three
breeding phases, during which time individuals may
exhibit different behavior within the annual breeding
season. For the northern study area, the breeding phases
were defined as: October 18–November 7 (early),
November 8–November 28 (peak), and November 29–
December 19 (late; [21]). For the southern study area,
the breeding phases were defined as: October 16–No-
vember 5 (early), November 6–November 29 (peak), and
November 30–December 20 (late [21];). Analyzing
phases separately may provide us with additional insight
into the ability of the two methods to detect potential
breeding events, however, there are also fewer locations
within each phase on which to make inference. In Penn-
sylvania, the early and peak rut seasons occur prior to
the start of rifle season but during archery season; how-
ever, hunter density is low during archery season com-
pared to rifle season. In addition, harvest regulation
changes intended to increase the number of older males
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in the population did not result in changes to timing of
breeding or female productivity (embryos/female; [21]).
We used both a liberal and conservative approach to

identifying MFIEs. There is little information on how
white-tailed deer move during a potential mate-
interaction because few studies monitor both males and
females; using both classification methods allowed us to
capture potentially different mate-interaction behavior.
For the liberal approach, we used the Prox function
within the WildlifeDI R package [42] to calculate the
distance between male-female pairs based on simultan-
eous locations. We defined MFIEs as events when a male
and female deer were within an average of 100 m of each
other for a minimum of 2 continuous locations (one
hour). We are not aware of any data on the distance be-
tween males and females during tending or the distance
necessary for a male to assess estrus state of a female. If
the larger distances were non-mate-interactions and the
analytic method performed well, we would see this in
the results (i.e., at short distances the method worked
well but not at large distances). For individual pairs with
repeated interactions, we delineated mating events based
on more than 100 m between the individuals for longer
than a two-hour period. Repeated interactions may indi-
cate revisitation behavior, as opposed to tending; how-
ever, we classify both as mate-interaction behavior.
For the conservative approach, we identified MFIEs

using a combination of proximity and similarity of

movement trajectories. To determine similarity of move-
ment trajectories, we used the DI function within the
WildlifeDI R package [42] to calculate dynamic inter-
action (DI) statistics for male-female pairs. This metric
compares the similarity of two animals’ movement tra-
jectories in relation to movement displacement (direc-
tion and speed), where values near − 1 indicate opposing
movement displacement, values near 0 indicate random
movement, and values near 1 indicate cohesive move-
ment displacement [42, 43]. To obtain a conservative es-
timate of MFIEs, we calculated the DI for each segment
of movement trajectory associated with the MFIEs iden-
tified by the liberal method and retained those events
with an average DI of greater than 0.5. A DI value of
greater than 0.5 indicates that two deer are moving simi-
larly within regards to their direction and speed of
movement [43]. Therefore, the conservative set of MFIEs
were events when a male and female deer were within
100 m, on average, of each other, for a minimum of 2
continuous locations and exhibited cohesive movement.
An example of a MFIE can be found in Fig. 1.

Evaluating the UD approach for identifying MFIEs
The Brownian bridge movement model (BBMM) is a
method for quantifying an individual’s UD, or the rela-
tive frequency of use across a given period of time, that
accounts for temporal autocorrelation in sequential ob-
servations and measurement error. Many methods exist

Fig. 1 Example male-female interaction events (MFIE) where black points are pre-event locations and orange and purple points represent female
and male locations, respectively, during the MFIE. The contours correspond to 95 and 50% probability contours of the utilization distribution (UD)
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to fit a BBMM to data, and we present one method
which can be implemented in R using existing packages.
Previous studies have inferred mating-related behavior
from male-only data by hypothesizing that locations that
occurred within an a priori probability contour repre-
sented locations of potentially receptive breeding females
(e.g., 30% in [25]), and from female-only data, when fe-
males travelled outside of an a priori probability contour
(e.g., 95% in [39, 60]). Therefore, we assessed the UD ap-
proach for both males and females and based inference
on the standardized UD volume of each location in a
MFIE. The standardized UD volumes are used to con-
struct probability contours by starting at the areas of
highest intensity use and then sequentially including
areas of less intensely used areas until the cumulative
volume reaches some desired proportion of the total vol-
ume; for example, a grid-cell with a UD volume of 30%
would be contained within probability contours greater
than or equal to 30% but not in those less than 30%.
Typically, the 95% probability contour is used to define a
home-range of an animal [22].
We used the BBMM package [55] and the function

brownian.bridge to estimate the parameters of the
BBMM. We fixed the measurement error to a standard
deviation of 10 m, based on field testing of the GPS col-
lars, and estimated the BBMM over a regular grid with a
spatial resolution of 30 m. We fit the BBMM to each in-
dividual separately, in two ways; we fit a single BBMM
to all locations within an annual breeding season, and

we fit a single BBMM to all locations within a breeding
phase (early, peak, and late). We then determined the
UD volume of each grid-cell, using the function getvolu-
meUD in the adehabitatHR package [11], that contained
the coordinates of locations identified as MFIEs. If the
MFIE locations had a UD volume that is consistently
less than some value for males (e.g., [25]) or greater than
some value for females (e.g., [39, 60]), then we can say
that the UD approach can determine mate-interaction
events from single-sex location data. See Fig. 2 for ex-
pected results if MFIE locations were consistently found
within a particular range of UD volumes.

Evaluating HMM for identifying MFIEs from single sex data
Hidden Markov Models (HMMs) have become a popu-
lar movement model for describing movement charac-
teristics (speed and turning angle) that are assumed to
arise from different behavioral states. To fit a HMM, we
first needed to obtain locations at regular intervals.
Therefore, we used the fmove.bayes function from the
ctmcmove package [31] to fit a continuous-time func-
tional movement model [10] with a fixed measurement
error (SD = 10m) and a CAR1 process error covariance
matrix. We used this model to estimate locations on an
hourly interval using 10,000 MCMC iterations; the pos-
terior mean of each location was used as the data in the
subsequent HMM analysis. We used the momentuHMM
package [47] to fit the HMMs and process the output.
Similar to the UD approach, we fit HMMs to both the

Fig. 2 Expected results from the utilization distribution (UD) approach if it was able to consistently identify male-female interaction events
(MFIEs). Subfigure A demonstrates the scenario in which MFIEs were in high-use areas (small UD volumes) and subfigure B is the scenario in
which MFIEs were in low-use areas or outside of core areas (large UD volumes). The inset shows an example UD with locations in high-use (A)
and low-use areas (B)
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full set of breeding season movement paths and to
breeding-phase specific movement paths (the subset of
hourly locations that fell into each breeding phase). We
also fit both two- and three-state HMMs; selecting the
appropriate number of states for an HMM is notoriously
difficult as many model selection methods overestimate
the number of states [56]. We hypothesized that deer
movement during the rut could be characterized by two
states or by three states. The addition of a third state
would allow for more flexibility in categorizing the
movement trajectory (e.g., foraging, resting, mate-
interaction as opposed to a subset of two behaviors).
The HMM does not tell you what behavior the state cor-
responds to; interpretation of the biological meaning of
the resulting states and their parameters is up to the re-
searcher. The HMMs were fit jointly, allowing the state
parameters to be shared among individuals; however,
this method does assume that movement quantities dur-
ing the states of interest arise from the same population-
level distribution, which allows for little individual vari-
ation. Because data used in the HMM model is predicted
hourly, we used the start and end times of the MFIEs to
denote MFIE locations in the continuous-time frame-
work (such that all hourly locations between the start
and end times of an MFIE were considered MFIE loca-
tions). The momentuHMM package calculates the most
likely state sequence using the Viterbi algorithm. If the
MFIE locations were consistently categorized as belong-
ing to one state over another, then we could say that the

HMM can determine mate-interaction events from
single-sex location data. In Fig. 3 we show our expected
results if the HMM approach was successful at identify-
ing MFIE.

Results
Using the liberal filter, we identified 27 MFIEs across
5 males and 7 females where MFIEs averaged 7.9 h
(minimum = 1 h, maximum = 78.9 h). Using the con-
servative filter, we identified 18 MFIEs across 4 males
and 5 females where MFIEs averaged 7.1 h (min = 1 h,
max = 27 h). A summary of each MFIE is in Add-
itional file 1 (Table A1–1 and A1–2). There was no
evidence that either a UD volume threshold a HMM
based on single-sex location data was able to identify
MFIEs.
For locations identified as occurring during an

MFIE, the standardized UD volume spanned 2–91%
for males (Fig. 4A and B) and 1–97% for females
(Fig. 4C and D). For males, the average UD for each
MFIE (the UD values for the cells traversed by an in-
dividual during a MFIE) ranged from 9.46–75.80%
and 10.98–75.80% using the liberal and conservative
MFIE classification methods, respectively (Table A1–3
and A1–4). For females, the average UD for each
MFIE ranged from 1.76–75.66% and 14.22–84.04%
using the liberal and conservative MFIE classification
methods, respectively (Table A1–3 and A1–4). We
did not see a relationship between the performance of

Fig. 3 Expected results from the hidden Markov model (HMM) approach if it was able to consistently identify male-female interaction events
(MFIEs) for a 2-state (A) and a 3-state model (B). Ideally all locations in each event would be identified as a single, consistent state across events
(the actual state label does not matter), but we would also expect that there may be some small proportion of locations within each event
classified as another state
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the method and either the average distance between a
male and a female during a MFIE (Fig. 4) or the dur-
ation of the MFIE (Fig. A2–1 in Additional file 2).
We also failed to detect a seasonal difference for ei-
ther sex in the ability of the UD to delineate MFIE in
different breeding phases (Fig. 5).
Using male-only data, the HMM was unable to

identify the MFIEs (Fig. 3). To visualize the results,
we calculated the proportion of locations within each
MFIE that were categorized as belonging to each
state. Single events were often split across multiple
states, and the predominant state that each event was
categorized as was not consistent across events (Fig. 6
and A2–2). The classification ability of the HMM did
not improve when restricted to single breeding phases
within a breeding season (Fig. A2–3, A2–4, A2–5,
and A2–6). There was also no relationship between
the performance of the method and either the average
distance between a male and a female during a MFIE

(Fig. 6, A2–3, and A2–5) or the duration of the MFIE
(Fig. A2–2, A2–4, and A2–6).

Discussion
Variation in movement metrics while in the presence of
an individual of the opposite sex was large both within
and among individuals; therefore, it is difficult for statis-
tical models to infer from single-sex location data where
and when an individual was engaged in a MFIE. Regard-
less of MFIE classification scheme, sex, or breeding sea-
son, there was no evidence of a UD volume threshold
for locations identified as an MFIE. We observed that
some UD volumes contained more MFIEs locations than
others, which could provide some support that UDs may
reflect mate interactions [25]; however, MFIEs were not
consistently restricted to a narrow range of UD volumes
and assuming MFIEs only occurred in these volumes
would ignore a significant portion of MFIEs. Defining a
MFIE as having occurred based on a UD volume thresh-
old alone will likely incorrectly identify the number and

Fig. 4 Histogram of the UD volume (the smallest probability density contour that would contain the location) associated with white-tailed deer
locations occurring during a male-female interaction event (MFIE) within the annual breeding season. MFIEs were identified using a liberal and
conservative identification method for males (A and B respectively) and females (C and D respectively). The UD volume for each point was
calculated as arising from a utilization distribution over the annual breeding season. The shading represents the average distance between a male
and female during the MFIE associated with each location
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location of potential mate interactions. Therefore, re-
searchers should be cautious when interpreting events
that have been identified based solely on single-sex loca-
tion data. For example, previous studies using male-only
location data made inference about mate-searching be-
havior and assumed that areas of high use by males rep-
resented the locations of females [25]. However, with no
data on females, focal areas identified in a UD analysis
could alternatively contain a resource that is important
for deer survival (e.g., cover, water, forage). During
MFIEs, male movement patterns were not consistently
restricted to a small probability contour (e.g., < 30%)
which may be because females did not remain stationary
throughout the rut. Although some males may exhibit
stationary movement behaviors during a breeding sea-
son, labeling such movements as corresponding to an
interaction with a potential mate could not be supported
by our analyses.
Presumed female mate-interaction events also were

not detected using female-only location data and a UD
approach. Females used portions of their home range
during MFIEs that were associated with varying UD

volume. In addition to individual variation, female mat-
ing strategies (sit-and-wait or excursions) are hypothe-
sized to depend on population densities and sex ratios
[34]. When only female locations are available, using
auxiliary information, such as back-calculating the con-
ception date (e.g., [60]), is recommended to identify the
mating location and its relationship to the individual’s
typical space-use.
Hidden Markov models also were incapable of classify-

ing movements in the presence of the opposite sex as a
unique behavioral state. HMMs identify behavioral states
by detecting a change in movement rate and direction
(i.e., turning angle). Therefore, the inability of HMMs to
correctly classify MFIE suggests that movement behavior
during mate-interaction is not consistently different
from other behavioral states (i.e., searching). As such, it
is likely difficult to determine when an individual shifts
their behavior from mate searching to mate interaction
using location data alone. It is tempting to think that
HMMs can directly estimate behavioral modes; however,
the HMM is estimating parameters of distributions, the
number of which is specified a priori by the researcher,

Fig. 5 Histogram of the UD volume associated with white-tailed deer locations occurring during a male-female interaction event for early, peak,
and late phases of the annual breeding season. Male-female interaction events were identified using a liberal and conservative identification
method for males (A and B respectively) and females (C and D respectively). The UD volume for each point was calculated as arising from a
utilization distribution over each phase within the breeding season
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that give rise to the observed step lengths and turning
angles. It is the researcher who ascribes a behavioral in-
terpretation to the estimated distribution. If the behavior
does not result in a consistent and interpretable parti-
tioning of the movement path, then the HMM will not
allow the researcher to make inference on the unob-
served behavioral state. In addition, if individuals are
mirroring another individual’s movement behavior dur-
ing the behavior of interest (e.g., attempted mating; [2]),
then single-sex location data would not be consistently
identified as a distinct state even though the behavior is
occurring.
The primary mortality risk factor for white-tailed deer

in our study area is hunting-induced mortality, which
varies in intensity in both time and space and across
sex- and age-classes. The three rut periods analyzed in
our study differ in the degree of hunting pressure ap-
plied to the deer population, because the late rut-period
overlaps with the rifle season and greater hunter dens-
ities. However, we did not detect any change in the abil-
ity of either method to identify MFIE across the rut
periods. Deer have been observed adjusting their move-
ment behavior during hunting seasons (e.g., [38, 41, 61]),
which could potentially alter the ability of these methods
to detect male-female interaction events. Integral to the
ability of both methods to identify MFIE is that the

behavior or space-use needs to be different than what
the individual exhibits when not engaged in a MFIE dur-
ing the temporal period in question; different movement
strategies related to hunter avoidance could increase or
decrease the ability of these models to identify MFIE.
We did not find support for using single-sex location

data and UDs or HMMs to identify when an individual
is with a potential mate. To identify mating events using
fine-scale movement data, auxiliary data about the
underlying behavioral states (e.g., conception date, in
situ observations) or location of available resources (e.g.
a mate) are needed. Increasing the sampling frequency
of observations would be most beneficial when both
males and females are collared, because it would allow
for greater certainty that a MFIE occurred. These events
could be used to provide direct inference on a MFIE, as
locations of a known behavioral state in a hidden
Markov model, or they could be used in a supervised
machine learning framework given a sufficient number
of events (e.g., [9, 12, 27, 45, 53]). Animal-borne video
collars are also a promising avenue by which to obtain
direct observations of the previously unobservable be-
havior (e.g., [6, 44, 63]). More generally, if the goal is to
identify an unobserved behavioral state of interest, in-
creasing the sampling frequency of individual locations
would be ineffective if space-use and movement

Fig. 6 Proportions of male white-tailed deer locations identified as arising from two- (A and C) and three- state (B and D) HMMs during male-
female interaction events (MFIEs) that were classified using the liberal event identification method (A and B respectively) and the conservative
event identification method (C and D respectively) where HMMs were fit to telemetry data across the breeding season. Events are ordered from
small to large average distance between a male and female during the MFIE
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quantities truly don’t vary with the state of interest. Al-
though our study focused on identifying mating behavior
in white-tailed deer, the results are relevant for any
study attempting to identify unobserved behavioral states
from space-use and movement data.

Conclusions
Incorrectly assigning behaviors to movement patterns is
likely to lead to an incorrect understanding of the trade-
offs associated with mating strategies. For example, an
explanatory hypothesis for drivers of space-use based on
single-sex location data may misidentify the trade-offs
an individual makes to visit such locations if mate inter-
actions do not actually occur in those areas. Instead,
movements ascribed to interactions with potential mates
simply may reflect trade-offs made to acquire other re-
sources or reduce predation risk. In addition, some
methods assume that mating resources (e.g., females) are
relatively stationary, which may fail to detect tending,
revisitation, or mating events between mobile individ-
uals. Models that incorporate independent data, such as
conception data [60], resource availability [33], molecu-
lar evaluations [20, 26], or in situ observations (via field
observations or video camera collars [8];), will reduce
the need for assumptions about underlying behavioral
states that are currently inferred from location data.
Our study demonstrates that although UDs and

HMMs may be readily accessible statistical methods for
ecologists to use to identify behavior, we did not find
that they were able to consistently identify male-female
interactions among white-tailed deer during the breed-
ing season. Our work highlights the importance of veri-
fying the primary underlying assumptions made when
using these methods to identify any behavior, which is
that space-use and movement differ in a consistent way
during the behavior of interest and differences are re-
lated to that behavior. For example, male white-tailed
deer engage in scramble-competition for mates, and this
strategy may produce too much variation in space-use
and movement during mate-interactions to be identifi-
able using single-sex location data and UDs or HMMs.
Differences in space-use and movement may be further
modified by individual variation landscape-level pro-
cesses, such as concentration of resources and hunting
intensity, which only increases the need to incorporate
validation data if the objective is to identify behavioral
states. Therefore, ecologists should use caution when
interpreting spatial and movement patterns observed in
UDs and HMMs as being indicators of specific behav-
ioral modes and suggest that auxiliary data are necessary
to validate the behavioral-inference obtained from these
two methods.
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