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Abstract

Background: Tri-axial accelerometers have been used to remotely describe and identify in situ behaviours of a
range of animals without requiring direct observations. Datasets collected from these accelerometers (i.e.
acceleration, body position) are often large, requiring development of semi-automated analyses to classify
behaviours. Marine fishes exhibit many “burst” behaviours with high amplitude accelerations that are difficult to
interpret and differentiate. This has constrained the development of accurate automated techniques to identify
different “burst” behaviours occurring naturally, where direct observations are not possible.

Methods: We trained a random forest machine learning algorithm based on 624 h of accelerometer data from six
captive yellowtail kingfish during spawning periods. We identified five distinct behaviours (swim, feed, chafe,
escape, and courtship), which were used to train the model based on 58 predictive variables.

Results: Overall accuracy of the model was 94%. Classification of each behavioural class was variable; F1 scores
ranged from 0.48 (chafe) – 0.99 (swim). The model was subsequently applied to accelerometer data from eight
free-ranging kingfish, and all behaviour classes described from captive fish were predicted by the model to occur,
including 19 events of courtship behaviours ranging from 3 s to 108 min in duration.

Conclusion: Our findings provide a novel approach of applying a supervised machine learning model on free-
ranging animals, which has previously been predominantly constrained to direct observations of behaviours and
not predicted from an unseen dataset. Additionally, our findings identify typically ambiguous spawning and
courtship behaviours of a large pelagic fish as they naturally occur.
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Introduction
In the past decade, the field of biologging has increas-
ingly enabled remote monitoring of many aspects of the
lives of some of the most enigmatic animals [1, 20, 49].
Devices such as tri-axial acceleration data loggers (here-
after accelerometers) allow for remote in situ assess-
ments of animal movements and are often used in the

marine realm [54, 57]. Accelerometers measure acceler-
ation across three axes (e.g. dorso-ventral [heave],
anterior-posterior [surge], and lateral [sway] axes; [54])
to generate a time-series characterising movement and
activity. Accelerometers, therefore, provide an opportun-
ity to describe and reveal behaviours of free-ranging ani-
mals based on unique characteristics of acceleration in
an environment that is otherwise difficult to directly ob-
serve [10, 33, 60]. Accelerometers also provide an oppor-
tunity to measure kinematics of animals, enabling the
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inference of behaviours. For example, accelerometer data
may be used in combination with spatio-temporal data
(e.g. depth, geographic location, season) to identify
ecologically-important behaviours, such as spawning
[60], or feeding [6, 14, 21, 58]. Indirectly inferring occur-
rences of such behaviours from accelerometer data also
allows for further insight into movement strategies [13,
62, 65], and energy budgets [26, 27] of animals in a free-
ranging environment. Studies have used visual observa-
tions of free-ranging animals to relate acceleration pro-
files to individual behaviours such as different modes of
travelling and feeding/drinking in Adélie penguins Pygos-
celis adeliae, domestic cat Felis catus [63], and polar
bears Ursus maritimus [41]. However, validation from
time-synchronised accelerations with direct observa-
tions, referred to as ground-truthing, is required to ac-
curately infer behaviours from accelerometer data and
create labelled datasets. Other studies have identified
feeding behaviours of free-ranging animals from animal-
borne video, time-synchronised to accelerometer data
[65, 66], but validating behaviour in situ using animal-
borne cameras is limited due to cameras either being
too large for small organisms, small cameras having a
short battery life incapable of recording for long periods,
or insufficient lighting.
To characterise fine-scale behaviours of taxa beyond

binary classification (e.g. active vs inactive), studies using
accelerometers are required to use high temporal reso-
lution sampling rates ([38], but see [18]). Consequen-
tially, datasets collected from accelerometers are
exceptionally large, consisting of millions of rows of
data. As a result, manually analysing accelerometer data-
sets is time-consuming and often one of the limiting
tasks of behavioural studies using these devices [34, 54].
To overcome these limitations, more recent studies have
used machine learning (ML) algorithms to train models
based on patterns in the collected data allowing predic-
tions from unseen data [3, 18, 19, 61]. Machine learning
approaches address complex, large datasets that would
otherwise be intractable using classical statistical tech-
niques [28, 61]. In particular, supervised machine
learners, such as random forest models, are trained on a
labelled data-sets to recognise unlabelled or “unseen
data” [61]. Random forest (RF) algorithms are an ensem-
ble classifier designed to mitigate the issues associated
with overfitting in decision trees through using multiple
unpruned classification or regression trees [2]. These
models are popular with behavioural classification data
(e.g. [18, 37, 41, 62]) because they often produce higher
classification accuracy than other models (e.g. k-nearest
neighbour, support vector machine, naïve Bayes, adap-
tive boosting [2, 30, 59];). Random Forest models are
able to handle thousands of mixed categorical and con-
tinuous predictions with robustness to outliers [61] and

have relative ease of execution. In the case of behav-
ioural classification of acceleration data, training an RF
model to predict from unseen data means first confirm-
ing the behaviour of the animal carrying an accelerom-
eter to match acceleration data with the corresponding
behaviour class of the individual [54, 63]. Thus, a well-
trained algorithm can estimate the behaviour of a free-
ranging (“unseen”) individual across ecologically-
important times or areas.
Understanding courtship and spawning behaviours of

large marine fish is vital to predict population responses
to environmental and fishing pressures, and develop
suitable and adaptable management strategies [46, 51].
However, observations of spawning behaviours of most
free-ranging fish is often difficult due to their patchy dis-
tribution, large-scale movements, occurrence in low light
conditions, and the logistical difficulties associated with
working in the marine environment). In marine fishes, ac-
celerometers have been used to characterise a number of
behavioural classes such as foraging [6], feeding [22, 58],
and escape behaviours [38] based on acceleration pro-
files. Accelerometers have also been used to charac-
terise complex reproductive behaviours of fishes, such
as chum salmon (Oncorhynchus keta), flounder (Para-
lichthys olivaceus), and greater amberjack (Seriola
dumerili) [51, 60, 71] by confirming reproductive sta-
tus via either destructive gonad sampling or direct
visual observations. Random forest models developed
through data collected via accelerometers therefore
offer an opportunity to build on this past research to
address the typically challenging task of detecting nat-
ural spawning events by training a predictive model
based on acceleration characteristics during visually-
confirmed events, and subsequently predict naturally-
occurring reproductive events on unseen data from
free-ranging individuals.
Yellowtail Kingfish (Seriola lalandi; hereafter referred

to as kingfish) is a large migratory pelagic fish, found
globally in temperate and sub-tropical coastal waters
[15]. In addition to being commercially and recreation-
ally targeted, kingfish are highly palatable and conse-
quentially part of an expanding aquaculture industry in
Japan and southern Australia [44]. Access to kingfish in
a captive aquaculture environment has permitted the de-
scription of their reproductive behaviours [11, 31].
Spawning most often occurs between dawn and dusk (A
Miller; pers. comms, [31]) and typically involves long pe-
riods of high-speed pursuit of a female by one male, in-
terspersed with stalling, nipping, and touching of bodies
followed by the male nipping the female gonoduct, pre-
sumably to induce spawning [31]. Kingfish movement
and body position during these events should, therefore,
be suitably different to other behaviours, providing a
unique opportunity to use accelerometers to characterise
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acceleration profiles of spawning behaviours [51] and de-
velop a RF model to predict these behaviours of free-
ranging kingfish..
This study aimed to describe and quantify behaviours of

captive kingfish by developing a supervised ML algorithm
(RF model) based on ground-truthed accelerometer data
and subsequently apply this to data collected from free-
ranging kingfish to identify naturally-occurring spawning
behaviour.

Methods
Captive kingfish trials
Captive trials were undertaken at the Clean Seas Aqua-
culture Hatchery Facility, in Arno Bay, South Australia
(33°56.222′S, 136°34.4918′E). Here, sexually mature
brood stock kingfish (Seriola lalandi) are housed in large
tanks for the purpose of ongoing production runs and
egg stocking. Brood stock kingfish in production tanks
are originally sourced from wild kingfish caught locally
in South Australia. Between August 2018 and February
2019, two tracking sessions where undertaken where six
captive brood stock kingfish (three each tracking session
- 1 female and 2 males; Table 1) were tagged with tri-
axial accelerometer data loggers (Technosmart Europe
srl, Axy-Depth, Rome, Italy) scheduled to record at 50
Hz and +/− 2G. Loggers were programmed to record in
three-axes of acceleration; surge (x), heave (y), sway (z;
Figure S1) corresponding to dorsal-ventral, anterior pos-
terior, and lateral orthogonal body axes.
Fish were removed from holding tanks and placed in-

side a “knock-out tub” containing AQUI-S (10 ppm) for
tagging. The logger was affixed to a padded base plate,
which was attached to the fish by passing 45 kg

breaking-strain monofilament leader through the dorsal
musculature of the fish using sharpened embroidery
needles, which had the monofilament passed through
the eyelet and held secured firmly with a small crimp
and heat shrink tubing. The monofilament was then cut
to remove the needle and passed through a padded but-
ton (one per strand of monofilament) to act as an an-
chor. To identify tagged individuals, accelerometers were
designed with different coloured buttons, different pat-
terns (for night-time), as well as different numbered base
plates that could be identified through video footage.
Once the logger was secured, the fish was returned to
the tank. A recovery period of 3 h following tagging was
allowed prior to trials to allow fish to resume regular be-
haviours. Following trials, tagged individuals were recap-
tured, and loggers were manually removed.
Over 5-day periods, four video cameras (GoPro Hero

7) were placed inside the tank to enable constant record-
ing over the trial period. Cameras were secured in water-
proof housings, while running from a charging power
bank battery pack to allow cameras to record for ~ 8-h
periods. Time on the video recording was synchronised
to the same time as the accelerometers, so that acceler-
ation data could be directly related to the video footage
for a given point in time. Trials were carried out in regu-
lar production brood stock tanks to ensure natural
spawning events would occur, so there were 27 (tracking
session 1) and 60 (tracking session 2) additional un-
tagged fish within each tank over the trial periods. Fish
were fed to satiation twice per day by spreading 1400–
2000 g of pellet into the tank over 3–5 min. Escape be-
haviour was also induced during the second tracking
session and consisted of a 5-min period where an

Table 1 Description of yellowtail kingfish (Seriola lalandi) used for captive (C) and free-ranging (FR) accelerometer trials. Free-ranging
kingfish were not checked for sex (shown as ‘-‘). Location refers to tagging location

Fish ID Location Date tagged Sex Total length (cm) Sunrise (ACST) Sunset (ACST) Logger recording time (hours)

C1 Arno Bay 21/08/2018 M 91 – – 115

C2 Arno Bay 21/08/2018 F 105 – – 115

C3 Arno Bay 21/08/2018 M 95 – – 115

C4 Arno Bay 8/2/2019 M 90 – – 93

C5 Arno Bay 8/2/2019 F 97 – – 93

C6 Arno Bay 8/2/2019 M 101 – – 93

FR1 Neptune Islands 28/10/2015 – 99 06:28 19:51 45.5

FR2 Neptune Islands 28/10/2015 – 98 06:28 19:51 37

FR3 Neptune Islands 30/10/2015 – 114 06:25 19:53 16.7

FR4 Neptune Islands 13/2/2019 – 120 06:56 20:22 10.7

FR5 Neptune Islands 15/2/2019 – 119 06:58 20:20 16.6

FR6 Coffin Bay 10/11/2019 – 151 06:19 20:05 51.2

FR7 Coffin Bay 10/11/2019 – 142 06:19 20:05 33.7

FR8 Coffin Bay 10/11/2019 – 140 06:19 20:05 30.3
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extendable pole was held inside the tank with the pole
moving behind tagged fish and used to instigate an es-
cape behaviour until it was out of reach. Times of initi-
ated feeding and induced escape behaviour were noted
for synchronisation with acceleration data. During win-
ter months (April–October) spawning in the tanks is ini-
tiated through manipulation of tank water temperatures,
but during warmer months (November–March) tanks
are kept at ambient seawater temperatures and spawning
occurs naturally. As not all fish engage in spawning
events within the tank, confirmation of courtship from
tagged individuals was required and obtained through
direct observation or video footage. .

Free-ranging kingfish trials
Between October 2015 and November 2019, eight free-
ranging kingfish (98–151 cm TL) were captured and
tagged with accelerometers (Little Leonardo, ORI400-
D3GT, Tokyo, Japan or Technosmart Europe srl, Axy-
Depth, Rome, Italy) for 2–3 days (Table 1). An additional
ninth kingfish was tagged with an accelerometer that
prematurely released after 2 h and so was excluded from
the analysis. Only fish > 80 cm total length (TL) were
tagged, as this is expected to be the minimum size that
both male and female kingfish are mature and to coin-
cide with spawning behaviours [11]. Additionally, an ef-
fort was made to ensure that free-ranging fish were of
similar size to the tagged captive fish to minimise any
potential influence of fish size on acceleration profiles
[67, 68]. Free-ranging fish (98–151 cm, mean 122.88 cm
TL) in this study were, however, slightly larger than cap-
tive fish (90–105 cm, mean 96.5 cm TL). Kingfish were
tagged during the Austral spring and summer months to
coincided with expected natural spawning events, that
are expected to be triggered by increasing water
temperature and occur between spring/summer months
i.e., November through April [11, 31, 43].
Accelerometers were attached to free-ranging kingfish

using the same protocol as detailed above (Captive kingfish
trials section) but were modified to self-detaching recover-
able packages, containing an accelerometer (Axy-Depth,
Technosmart Europe srl, Rome, Italy), radio transmitter
(MM100, Advanced Telemetry Systems Inc., Isanti,
USA), and Smart Position and Temperature transmit-
ting tag (258, Wildlife Computers, Redmond, USA),
and were deployed with corrodible links to allow for
recovery after 2–3 days (Figure S1). Logger packages
(138–150 g, 15 × 4 × 5.5 cm; Figure S1) were designed
to be as small and streamlined as possible and of
similar size to logger plates used in captive trials.

Data analysis
Accelerometer data were downloaded and visually ob-
served through IGOR Pro (WaveMetrics Inc., Lake

Oswego, OR, USA, version 8.0.3) with add-on software
Ethographer [52]. Data from periods where fish could
not be directly observed or identified from the video
footage due to low light conditions, or out of view of
cameras were removed from further analysis.
Static acceleration (as a result of Earth’s gravitational

field) and dynamic acceleration (representing body
movement) were calculated for all three acceleration
axes (X, Y, and Z) to filter the dominant signal caused
by tail beating and body attitude, and to isolate behaviours
with high amplitude acceleration (Table 2) [55, 70]. Con-
tinuous wavelet transformations were then applied to the
lateral acceleration data (sway axis [Z] as a measure of tail
beating undulations [47, 52];) to derive acceleration wave-
lets representing amplitude and stroke frequency (cycle) of
tail beat cycles. The vector of the three axes of dynamic
body acceleration (VeDBA) was calculated as a metric of
activity level, where behaviours associated whereby in-
creased levels of activity and metabolic rate correspond to
higher values of VeDBA [4, 25, 27, 45]. Pitch and roll values
were calculated based on orientation of the logger (Table
2). Absolute values for roll were used to represent the roll
without influence of directionality (i.e. -90 o and + 90 o

resulting in running mean average roll of 0 o, or minimum
value equalling 90o). We produced a set of descriptive pre-
dictor variables characterising kingfish behaviour for subse-
quent ML classification (n = 64, Table 2), by calculating the
mean, standard deviation, skewness, kurtosis, minimum,
and maximum for each of these values from 1 s increments
[54] matched to known behaviour labels. Summarising ac-
celeration data into 1-s increments was chosen as longer in-
crements would not encompass short burst behaviours
such as chafe (which only lasts 1–2 s) [7, 19, 50], in addition
to it not being possible to make sub-second manual obser-
vations of behaviour.
Time-series acceleration data were inspected to identify

potential burst-behaviours, behaviours that exceeded ±1 g
acceleration in the sway axis (indicative of behaviours with
high acceleration amplitude associated with tail beat), had
substantial changes in roll, or periods of rapid changes in
acceleration were inspected in the video footage. This con-
servative threshold was expected to be sufficient to detect
successful spawning events based on previous descriptions
of spawning in Seriola dumerili exceeding ±2 g [51]. Feed
and escape behaviours were identified based on but events
during times that fish were fed, or escape trials were
undertaken. Behaviours were then coded (using the Etho-
grapher mask feature) as one of five behavioural classes
observed from the video: feeding, swim, escape, courtship,
or chafe (Table 3).

Development of a machine learning classification algorithm
Random forest classification were performed using the
‘randomForest’ package in R (version 1.1.453). Values
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from each predictor variable was pooled for all captive
individuals into a single dataset, before being randomly
split into two datasets; 70% for training the model and
30% as a test dataset to assess the performance of the
model. This partitioning of data is commonly used in
machine learning applications to ensure a suitably-sized
test dataset, enabling high accuracy of error estimates
from acceleration data studies [37, 56]. A range of num-
ber of trees (ntree values) were tested starting at 500 and
increasing in increments of 500 up to 2000 trees.

Additionally, the number of variables randomly sampled
at each split (mtry) were tested (in increments of 5, from
5 to 20) to assess influence on error rate of the model. It
was deemed that an ntree value of 1000 with mtry de-
fault value (square root of the number of predictor vari-
ables) was sufficient based on the low range of Out-Of-
Bag (OOB) error variation (5.54%), that showed minimal
change when the number of trees increased beyond
1000 (Figure S2). An attempt was made to account for
the unbalanced size of behaviour class data through

Table 2 Definitions and formulae for each predictor variable measured through the accelerometer data

Variable Formula Definition

Static acceleration Filtered 0.06, 0.6 1 s means for static acceleration representing body posture in each axis

Dynamic acceleration Raw (g) – Static (g) 1 s means for dynamic acceleration representing body movement in each axis

Vector of Dynamic Body
Acceleration

√Dynamic (X axis)2 + Dynamic
(Y axis)2 + Dynamic (Z axis)2

Square root of the sum of squares of absolute dynamic body acceleration
in each axis

Cycle Cycle for the dominant frequency obtained through the continuous wavelet
transformation generated spectrogram. Represents the inverse of tail-beat
frequencies.

Amplitude Amplitude for the dominant frequency obtained through the continuous
wavelet transformation generated spectrogram.

Pitch atan(X axis/(sqrt(Z axis*Z axis) +
(Y axis)*(Y axis))) *180/pi

Body inclination of the fish [64] during ascending (+) or descending (−)

Roll atan2(Z axis, Y axis)*180/Pi Spinning movements of an individual around the main axis of the fish [53].
Absolute values for roll were used to alleviate influence of roll direction.

Standard deviation Standard deviation of static and dynamic acceleration, VeDBA, pitch and roll
in each axis.

Skewness A measure of the symmetry of the variable

Kurtosis A measure of the tail shape of the variable

Minimum Minimum value of static and dynamic acceleration, VeDBA, pitch and roll in
each 1 s increment

Maximum Maximum value of static and dynamic acceleration, VeDBA, pitch and roll in
each 1 s increment

Table 3 Definitions of behaviours coded from video footage that were attributed to acceleration data. Behaviours that were
initiated by researchers are marked with a

Coded behaviour Definition

Feeda Between 1400 and 2000 g of pellet feed was dispersed into the tank from the surface and fish were observed
accelerating towards and consuming pellets. Typically lasted 3–5 min, until pellets were exhausted.

Escapea Five trials per individual of 5-min in length where a researcher used a long pole to initiate burst swimming
behaviour by following tagged fish with the pole until fish was out of reach. Only events where fish were visually
observed to react to the presence of the pole where included as escape.

Courtship Included both typical chase preceding spawning and actual spawning events, due to low sample size of visually
confirmed spawning events (n = 8). A typical chase was identified from the tagged individual(s) chasing another
kingfish by closely following behind or next to another fish with increase in swim speed, often rubbing nose on
the underside of the body or nipping at pelvic or caudal fins [31]. Spawning was identified by a group of individuals
(including tagged fish) closely rubbing bodies, followed by large burst swimming by involved individuals lasting
< 10 s, and with gametes observed in the water column.

Chafe Individual rolls to face one side of the body to the surface either in mid-water or to the bottom of the tank. Roll
motion where dorsal side contacts surface or substrate in an effort to remove unwanted parasites or foreign bodies
[19, 36]

Swim Typical swim behaviours with no burst or roll events, steady lateral undulatory locomotion [19, 29]. 1500 s of swimming
behaviour was allocated during periods where fish could be directly observed regularly swimming around the tank
with no bursts in acceleration amplitude observed. These periods were allocated as five random, 5-min periods with
good visibility, and not within 30 min of feed- or escape trials.
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stratified sampling with equal probabilities (function:
strata, package: sampling version 2.8). However, while
this stratified sampling improved precision accuracy of
behaviour classes with smaller sample sized (e.g chafe),
precision of courtship class was decreased and so this
function was not included in the final model. The 64
predictor variables were checked for relative importance
to the overall class predictive performance of the classifi-
cation model with the function ‘varImpPlot’ within the
‘randomForest’ package in R, measures the mean de-
crease in overall accuracy if a predictor variable is re-
moved from the model (Figure S3) [56, 61, 62].

Evaluation of performance
Performance metrics were calculated from the RF confu-
sion matrix as indicators of the classification perform-
ance of the model [3, 8]. A confusion matrix was created
using the ‘caret’ package in R. This matrix provides a
table of actual observations from each behaviour class
(rows) versus the behaviour class predictions of the
model (columns) Performance metrics were calculated
from the true positive (TP), false positive (FP) and false
negative (FN) observations determined by the confusion
matrix [3]. True positives are observations which have
successfully been assigned to the correct class by the
model [3]. False Positives are observations which have
been incorrectly assigned to a behaviour class. False
Negatives (FN) are values that belong to a particular
class, but have been incorrectly assigned to another be-
haviour. To evaluate performance of the model for pre-
dicting distinct behavioural classes, evaluation metrics
(Pr), recall (Re), and the F-measure (F1) were used:

Recall: Proportion of predicted behaviours from each
class that were correctly classified.

R ¼ TP=TP þ FN

Precision: Proportion of predicted behaviours from
each class that were that behaviour.

P ¼ TP= TP þ FPð Þ

F1 Score: The harmonic mean of recall and precision.
Value of 0–1, where values near 0 have low
classification performance, while values closer to 1 have
best classification performance

F1 ¼ 2PR= P þ Rð Þ

Predicting free-ranging kingfish behaviours
The RF algorithm developed using ground-truthed data
from captive kingfish was subsequently applied to un-
seen data from eight free-ranging kingfish using the pre-
dict.randomForest function in R. The first 60 min of data
once each fish was released was removed from the data-
set, to avoid incorrect allocations of capture induced be-
haviours. As kingfish are physiologically robust fish [32]
and anaesthetic was not used during the tagging proced-
ure of free-ranging individuals, we assumed 60min to be
sufficient time for resuming regular behaviours. Each 1 s
running mean increment of time-series data (recorded at
50 Hz) was allocated a predicted behavioural class, based
on values and the same predictor variables calculated
from captive fish to train the RF. To minimise misalloca-
tions of free-ranging behaviour class predictions, 1 s in-
crements that were predicted differently to the
behaviour in adjacent increments was instead allocated
as the same behaviour as that which preceded it. For ex-
ample, if behaviours were classified as swim, swim, feed,
swim, swim; feed would be reclassified as swim. Given
the improbability of behaviours occurring in a duration
< 1 s, it is more likely that a predicted behaviour is the
same as that which precedes that second, rather than
transitioning to a new behavioural class for only 1 s.
Courtship predicted from the model were categorised as
either spawning events or reproductive behaviours.
Spawning events were considered as each portion of the
free-ranging kingfish data where courtship was predicted
from the model (Figure S4). Reproductive behaviours in-
cluded time periods where several spawning events were
predicted over a 30–90-min period, based on descrip-
tions from ([31]; Figure S4). Time-series data were then
allocated into selected time-bins, apportioned as dawn,
day, dusk, and night based on data of 1-h periods either
side of sunrise (dawn) and sunset (dusk) for the location
at point of capture collected from https://www.
timeanddate.com (accessed 20/01/2021). Values of
swimming depth (m) was also recorded once every 5 s
for free-swimming fish, and values for each 1 s running-
mean were allocated based on the previously filled value.

Results
Captive kingfish behaviour classes
A total of 624 h of acceleration data was obtained from
six kingfish during captive trials over two tracking ses-
sions at times of controlled spawning. Fertilised eggs
were collected from trial tanks from 4 out of 5 and 3 out
of 4 nights from Tracking session 1 and 2 respectively,
confirming that successful spawning occurred on seven
nights while kingfish carried accelerometers. Over 11,
600 s of accelerometer data were ground-truthed and
categorised as one of five behavioural classes: feed (1332
s), escape (398 s), courtship (766 s), chafe (113 s), and
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swim (Fig. 1). Total events (1-s increments) allocated to
behavioural classes per individual varied between 1674
(C2) to 2490 (C4) seconds.
Twenty-five minutes (1500 s) of regular swim behav-

iour was manually coded for each captive fish (9000 s
total, Table S1). Feed events were observed for all cap-
tive individuals, apart from C3. Feed classes varied be-
tween 30 and 614 s per individual, and a total of 1332 s
across all fish (Fig. 1, Table S1). Courtship behaviours
were observed from five fish, varying between 128 and
172 s in total per individual (Fig. 1, Table S1) and a cumu-
lative total of 776 s. Escape behaviours were variable be-
tween individuals, with only 2 s of this class observed for
C1 and C3, with up to 182 s for C6 (Fig. 1, Table S1). No
escape behaviours were observed for C2. A total of 398 s
of escape behaviours were collected across all fish. Chafe
was the least represented behavioural class, with 113 s of
this behaviour observed varying between 5 (C2) and 45
(C6) seconds in continuous length (Fig. 1, Table S1).

Acceleration characteristics of behaviour classes
Chafe behaviours were typified by a short burst (1–3 s)
where fish dove to the bottom of the tank represented
by a descend in depth and pitch (mean Pitch = − 6° ±
2.21), with large values of roll as fish would turn onto
their sides (Fig. 2, Figure S5). Chafe included medium-
strength bursts of acceleration, characterised by in-
creased VeDBA (0.31 G ± 0.01) and tail beat (amp =
0.14 ± 0.02, cycle = 0.54 ± 0.01 s).
Courtship behaviours were typically extended periods

(up to 1–2min) of increased cycle and amplitude, inter-
spersed with short bursts of roll and pitch (Fig. 2, Figure
S5). Courtship events displayed the highest intensity accel-
eration of all behaviours (mean VeDBA= 0.48 ± 0.002 g),

though tail beats were slightly slower and less strong than
during feeding (amp = 0.19 ± 0.01, cycle = 0.43 ± 0.004 s).
Escape behaviours had acceleration signatures that

were lower in intensity compared to other burst behav-
iours (e.g. feed, courtship) but higher than typical swim-
ming (mean VeDBA = 0.15 ± 0.002G). Fish remained
mostly upright (pitch = 2 ± 0.50 °), with intermittent
small roll values (34.4 ± 0.73 °; Fig. 2, Figure S5).
Feed behaviours were identifiable by several large

peaks in amplitude and VeDBA values with several large
events over 3–5 min periods (Fig. 2, Figure S5). These
large peaks corresponded to observed moments that fish
would increase acceleration to feed on a pellet in the
tank. Feed had the second highest intensity of acceler-
ation (mean VeDBA = 0.43 ± 0.003 G), with the fastest
tail beat cycles (0.42 ± 0.003 s) and highest amplitude
(0.21 ± 0.006). Pitch was slightly positive (mean = 5 ±
0.38 °) due to fish ascending towards the surface to con-
sume pellets.
Swim behaviours were characterised by steady, low

values of acceleration, pitch, roll, and cycle, and consistent
low peaks of cycle demonstrative of the regular occurring
tail beat of the individual (Fig. 2, Figure S5). During swim,
VeDBA was lowest out of all classes (mean VeDBA =
0.04 ± 0.44 G), which was due to slow, long-duration tail
beats (amp = 0.02 ± 0.006, cycle = 0.9 ± 0.003 s). During
swim, body position of fish remained upright, resulting in
roll values close to zero (mean roll = 0.34 ± 0.7).

Model classification performance of behavioural classes
Overall model accuracy of the RF model was 94%. The
RF model predicted behaviour classes with variable per-
formance (F1 ranging from 0.46–0.99). Classification
performance (F1) was highest for swim and feed classes
(> 84% accuracy, Table 4), followed by courtship, with
lower allocation scores for escape and chafe classes
(Table 4).
Swim class had the highest correct allocation of all be-

havioural classes, with all performance metrics exceeding
0.99 (Table 4). Swim was correctly predicted for all 1 s
increments, except for 9 s which were incorrectly allo-
cated as escape. Feed was the next highest performing
behavioural class. Somewhat low precision for the feed
class (0.75) caused by feeding behaviours being predicted
by courtship, chafe, and escape, was complemented by
high recall (0.93), resulting in an F1 score of 0.84. Court-
ship had a high level of correctly allocated predictions
(precision = 0.93), on only 11 occasions was incorrectly
allocated as feed, chafe, or escape. Courtship had a lower
score for recall (0.57) as a result of misallocations of ac-
tual courtship events being predicted incorrectly, pre-
dominantly as feed. This resulted in an F1 score for the
courtship class of 0.70. Escape was largely correctly allo-
cated (precision = 0.69), though 17 and 12% of escape

Fig. 1 Number of 1 s increments spent performing observed
behaviours for captive kingfish tagged with accelerometers, (n = 6,
recording time = 115 h C1, 2, 3; 93 h C4, 5, 6). Swim behaviours are
not included as the same amount of time swimming (1500 s) was
used for each individual
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behaviours were incorrectly allocated as swim and feed
classes, respectively. The model incorrectly predicted
courtship (9%) and feed (12%) occurrences as escape
resulting in a recall score of 0.70, and an overall F1 of
0.69. Chafe was the poorest performing behavioural
class, with only 31% of chafe behaviours correctly allo-
cated as this class. Most of these behaviours (48%) were
incorrectly predicted as the feeding class. Although chafe
had a high result for precision (0.90) representative of
the model only incorrectly predicting chafe to occur
once, as feeding. These values resulted in a F1 score of
0.46.

Free-ranging kingfish behaviours
The model trained using the entire ground-truthed
dataset was used to predict naturally-occurring be-
haviours from eight free-ranging kingfish (Fig. 3). All
five behavioural classes observed and coded in the
captive trials were predicted to be performed by free-
ranging individuals. Five of the eight free-ranging fish
spent most of the recording period swimming (67–
97%; Figure S6), however the remaining three fish
(FR4, FR5 and FR7) mostly displayed escape behav-
iour, accounting for 81, 58, and 45% of behaviour
class allocations, respectively.

Fig. 2 Characteristics of observed behavioural classes from captive Kingfish tagged with accelerometer loggers. Mean values shown as red
diamonds. Black horizontal bars represent median values. Black boxes encompass the interquartile range, and vertical black lines represent the
maximum and minimum values
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Table 4 Performance metrics of behavioural classes from captive kingfish calculated from random forest algorithm on the test data
(30% overall). Grey boxes represent number of correctly allocated behaviour increments from test data set

Fig. 3 Example of one free-ranging kingfish reproductive event predicted from the random forest model (a), and, total duration in seconds of (b)
reproductive behaviours and (c) spawning events predicted from free-ranging yellowtail kingfish individuals at the Neptune Islands (blue) and
Coffin Bay (green) as predicted from a supervised machine learning model. Different colour shades represent an individual fish. Time of day is
indicated by dawn (orange), dusk (orange), day (yellow) and night (grey)
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Courtship was predicted to occur from five free-
ranging fish, three from the Neptune Islands and two
from Coffin Bay. A total of 48 spawning events were
predicted and classified into 19 expected reproductive
behaviours. Reproductive behaviours were typically
made up of between 1 to 6 spawning events, with one
reproductive event containing 18 spawning events (Fig-
ure S7), lasting 108.6 min (Fig. 3b). Of the 19 events, 12
included only single spawning events (Figure S7). Of
these single occurrence events, duration ranged from 3
to 14 s (Fig. 3c).
Reproductive behaviours occurred between 12 and

103 m of depth at the Neptune Islands (n = 16 events,
mean = 35.8 ± 3.84 m) and 1–6 m in depth at Coffin Bay
(n = 5 events, mean = 2.98 ± 0.42 m). During courtship
events, fish exhibited minimal changes in depth, gener-
ally propelling slightly towards the surface 0.74 ± 0.18 m
in Coffin Bay, 1.81 ± 0.38 m at the Neptune Islands (Fig.
3a). Courtship predominantly occurred at dawn and day,
with 17 and 18 events (accounting for 35 and 38% of all
spawning events respectively. Comparatively, 7 (15%)
and 6 (13%) of the predicted events occurred at night
and dusk (Fig. 3c).

Discussion
This study used accelerometers and machine learning to
detect and describe reproductive behaviours of yellowtail
kingfish in a captive environment, differentiate these
from other behaviours, i.e. swimming, feeding, escape
behaviours, and to identify these behaviours in free-
ranging kingfish. Our results showed that all behaviour
classes were predicted from free-ranging kingfish, with
swimming and escape behaviours being most common.
Evidence of courtship was observed from five free-
ranging kingfish, supporting the occurrence of repro-
ductive behaviour and events at both the Neptune
Islands and Coffin Bay, and further encouraging the
combined use of accelerometers and machine learning
as a tool to identify naturally-occurring behaviours of
large pelagic fish.
Accelerometers provide an opportunity to record in

situ movements of free-ranging organisms to infer
behaviours based on changes in acceleration, body pos-
ition, and tail beat signatures [23, 69]. Previous applica-
tions of this method to verify ecologically-important
behaviours of large pelagic fishes have been limited to
identifying and describing spawning events of marine
fishes based on visualisation of tail beat acceleration sig-
natures [51, 71]. However, accelerometers have not yet
been used to distinguish spawning from other naturally-
occurring burst behaviours. We successfully identified
and described five behavioural classes of yellowtail king-
fish, including courtship, based on variables characteris-
ing acceleration profiles, body position, and tail beat

signatures. While visual observation of data obtained
from accelerometer loggers was sufficient to identify
burst behaviours (e.g. courtship, feed, escape), the ran-
dom forest algorithm was necessary to differentiate
among burst behaviours.
Swimming behaviour in pelagic fish is represented by

regular, low intensity cyclic patterns in sway acceleration
which is more regular and consistent compared to infre-
quent, high intensity burst behaviours [4, 12]. These pre-
dictable waveform signals are typical in pelagic fish and
sharks [12, 19], contributing to forward propulsion and is
commonly the most highly allocated behaviour in ma-
chine learning studies differentiating behaviours of swim-
ming marine organisms given that these behaviours are
the most frequently performed behavioural class [19].
These expectations were met by our model, with consist-
ent high levels of successful allocations for swimming be-
haviour. However, differentiating behavioural classes with
more complex kinematics of movement, and high and
variable frequency and amplitude such as burst behav-
iours, has been a challenge for most accelerometer-based
studies of behavioural predictions [6, 51].
While courtship and spawning were visually confirmed

from five of the six tagged captive kingfish, low light
levels when courtship and spawning mostly occurred, i.e.
at night, dusk, and dawn [31, 43], limited the number of
spawning events which could be visually confirmed via
video footage. Induced spawning through hormone in-
jections could have been used to increase the number of
spawning events observed (e.g. [51]), but the acceleration
signature from such events may not be representative of
kinematics exhibited during naturally-occurring spawn-
ing (i.e. less courting or chasing), limiting its use to infer
spawning events in free-ranging fish. Likewise, the use of
artificial lighting to improve visibility in low light condi-
tions (e.g. at night) could affect fish behaviour and pre-
vent spawning from occurring [5, 17, 24]. Instead,
increased observation effort during dawn and dusk when
spawning is expected to occur would likely increase the
number of reproductive behaviours observed and im-
prove predictive capacity of naturally-occurring court-
ship in the future.
The most frequently predicted behaviour of free-

ranging kingfish at both the Neptune Islands Group and
Coffin Bay was swimming, providing some support for
the predictive power of our approach given it would be
expected that swimming should be occurring a majority
of time by free-ranging individuals. However, escape was
the most frequently predicted behaviour in three free-
ranging fish, but it is unlikely that these fish spent more
time escaping predators than swimming across 1–2 days.
Acceleration signatures are also influenced by body size
and locomotion of pelagic schooling fish [40], which
may result in misclassification of behavioural classes
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between differently sized individuals. In addition to body
size, free-ranging kingfish may exhibit larger tail strokes
than captive fish constrained in tanks, resulting in fast
regular swimming in free-ranging fish being allocated to
escape behaviours. While we attempted to minimise
these effects by attaching loggers to fish of similar size in
both captive and free-ranging environments, free-
ranging fish were slightly larger than captive individuals.
Escape behaviours invoked by pursuing individuals with
a pole in the captive environment may also not be suffi-
ciently comparable to natural escape responses in a free-
ranging environment. For example, kinematics exhibited
while escaping predators would likely differ from ma-
noeuvres performed in tanks. Therefore, this may lead
to the escape behaviours from the captive fish poorly
translating in the model, contributing to high allocations
of escape in some free-ranging individuals. Although this
approach is effective for identifying some behaviours
(e.g. courtship, feeding), the constraints of validating
naturally-occurring behaviours in tanks can affect the
accuracy of detecting others (i.e. escape) that are not
well translated from captive to natural environments.
Access to captive kingfish from the aquaculture indus-

try has previously enabled research describing spawning
and reproduction in captivity [31, 43]. Our study reveals,
for the first time, information about the timing and loca-
tions of kingfish spawning in the wild. A total of 19 re-
productive behaviours were identified in five of the eight
free-ranging fish, although Thirteen behaviours lasted
less than 1 min and might be misallocated behaviours.
The six remaining behaviours lasted 14–109 min which
is of similar duration to reproductive behaviours de-
scribed by [31]. All but two of these behaviours occurred
at dawn or dusk, resembling theories of spawning occur-
ring predominantly during low light levels, e.g. dawn
[31, 43] and supporting the validity of our results here.
Courtship was identified from fish tagged at both study
sites, the Neptune Islands and Coffin Bay. While it is
possible that the kingfish left the vicinity of the Neptune
Islands or Coffin Bay after tagging, the location of the
loggers upon recovery and high residency of kingfish at
both these locations (T. Clarke, unpublished data) sug-
gest that the spawning observed occurred in areas within
Coffin Bay and around the Neptune Islands. While these
findings of courtship are encouraging, predicted court-
ship events which do not match the described spawning
profiles of kingfish may have been misclassified from
other burst event behaviours with similar acceleration
profiles. This reiterates that behaviours identified by the
RF model should be carefully reviewed and ground-
truthed where possible regardless of the high accuracy
and performance of the model [61]. It is also possible
that the identified courtship events did not result in the
release of gametes, which affects the suitability of using

accelerometers to infer spawning events [16]. However,
even if the tagged fish does not release gametes, the indi-
cation that courtship or spawning attempts are taking
place is a reliable indication of timing and areas used for
reproductive events [16] and that accelerometers can
help identify when spawning is occurring. Integrating
additional sensor (e.g. depth sensor) or tags (e.g. acoustic
or satellite tags) means we can also use accelerometers
to infer patterns in migrations, as well as spatial and
habitat use to determine spawning location and depth
for spatial and temporal management efforts to protect
spawning aggregations [9, 42, 48].
A limitation of behavioural studies such as ours using

accelerometers is the individual variation in behaviours,
movements, and swimming performance between cap-
tive and wild individuals. Captive environments are
space-limited and often have manipulated conditions
which may skew its performance for use on datasets
from free-ranging individuals. In addition, ML algo-
rithms such as the RF model developed in this study
do not account for the temporal auto-correlation ex-
pected in timeseries [3, 28]. While there are very few
ways to combat these issues (e.g. Hidden Markov
models [28];), future studies may attempt to ground-
truth data in the wild environment through means of
animal-born video cameras. However, these technolo-
gies come with a trade-off of limited battery-life, low
visibility under poor light conditions, and additional
weight to accelerometer packages potentially influen-
cing behavioural profiles.

Conclusions
Combined use of accelerometers and supervised ma-
chine learning algorithms has become prevalent as a
method of characterising behaviour classes from both
terrestrial and marine taxa. Our study builds on past
work, which has been predominantly constrained to
direct observations of behaviours, by applying such
models on free-ranging data in a natural environment.
Through direct observations of courtship and spawn-
ing behaviours, our findings provide the first study to
predict naturally-occurring courtship of a large pelagic
fish, yellowtail kingfish, via the use of accelerometers
and ML. These findings contribute to more detailed
approaches of identifying naturally-occurring behav-
iours, which in the past have been only inferred
through increase in general activity patterns, or de-
structive sampling approaches. This method may con-
tribute to a detailed understanding of timing and
location of important reproductive aggregations of
large pelagic fish, and in turn the effective spatial and
temporal management strategies required to protect
spawning populations.
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Additional file 1: Figure S1. Orientation of accelerometer packages
attached to a) captive, and b) free-ranging Yellowtail Kingfish. Loggers
remained attached for 2–3 days after which a corrodible link releases the
tag to the surface for collection. Figure S2. Error rate of Random Forest
model with increasing number of trees (ntree). Figure S3. Variable im-
portance plots for predictor variables Mean decrease in accuracy shows
how model performance decreases if a predictor variable is removed
from the model, and mean decrease in Gini Index shows the importance
of a predictor variable based on Gini Impurity Index for the calculation of
splits in trees. Figure S4. Example of spawning events (n = 16, pink
markers) and reproductive behaviours (n = 1, orange arrow) as predicted
from RF model applied on free-ranging Kingfish. Figure S5. Acceleration
signatures for A) swim, B) escape, C) chafe, D) feed, and E) courtship be-
havioural classes from captive Yellowtail Kingfish recorded via accelerom-
eter loggers. Figure S6. Number of 1 s increments predicted from free-
ranging Yellowtail Kingfish at each hour of the day. Time of day is indi-
cated by dawn (orange), dusk (orange), day (yellow) and night (grey).
Figure S7. Number of a) reproductive behaviours and b) spawning
events predicted from free-ranging Kingfish at the Neptune Islands (blue)
and Coffin Bay (green), as predicted from the Random Forest model.
Time of day is indicated by dawn (orange), dusk (orange), day (yellow)
and night (grey). Table S1. Total number of seconds for each behaviour
class from captive Yellowtail Kingfish used to train the Random Forest
model.
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