
RESEARCH Open Access

Time-varying predatory behavior is primary
predictor of fine-scale movement of
wildland-urban cougars
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Abstract

Background: While many species have suffered from the detrimental impacts of increasing human population
growth, some species, such as cougars (Puma concolor), have been observed using human-modified landscapes.
However, human-modified habitat can be a source of both increased risk and increased food availability, particularly
for large carnivores. Assessing preferential use of the landscape is important for managing wildlife and can be
particularly useful in transitional habitats, such as at the wildland-urban interface. Preferential use is often evaluated
using resource selection functions (RSFs), which are focused on quantifying habitat preference using either a
temporally static framework or researcher-defined temporal delineations. Many applications of RSFs do not
incorporate time-varying landscape availability or temporally-varying behavior, which may mask conflict and
avoidance behavior.

Methods: Contemporary approaches to incorporate landscape availability into the assessment of habitat selection include
spatio-temporal point process models, step selection functions, and continuous-time Markov chain (CTMC) models; in
contrast with the other methods, the CTMC model allows for explicit inference on animal movement in continuous-time.
We used a hierarchical version of the CTMC framework to model speed and directionality of fine-scale movement by a
population of cougars inhabiting the Front Range of Colorado, U.S.A., an area exhibiting rapid population growth and
increased recreational use, as a function of individual variation and time-varying responses to landscape covariates.

Results: We found evidence for individual- and daily temporal-variability in cougar response to landscape characteristics.
Distance to nearest kill site emerged as the most important driver of movement at a population-level. We also detected
seasonal differences in average response to elevation, heat loading, and distance to roads. Motility was also a function of
amount of development, with cougars moving faster in developed areas than in undeveloped areas.

Conclusions: The time-varying framework allowed us to detect temporal variability that would be masked in a
generalized linear model, and improved the within-sample predictive ability of the model. The high degree of individual
variation suggests that, if agencies want to minimize human-wildlife conflict management options should be varied and
flexible. However, due to the effect of recursive behavior on cougar movement, likely related to the location and timing of
potential kill-sites, kill-site identification tools may be useful for identifying areas of potential conflict.
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Background
Individual-level movement decisions are one of the
underlying processes that give rise to population-level
patterns such as species distributions or their density
and abundance on the landscape [1]. Movement deci-
sions are a function of a number of variables, including
the current location of the individual and the alternative
available landscape [1]. Therefore, a central theme of
animal ecology is the assessment of an individual’s selec-
tion for habitat, given what is available [2]. Habitat selec-
tion is typically characterized using resource selection
functions (RSF), which are often fit using logistic regres-
sion to compare the locations used by an individual or
population to a random sample taken across some area
defined as “available” [3]. Use that is disproportionate to
habitat availability implies that the individual selects for,
or avoids, the given habitat [3]. However, inference on
selection depends on what components are considered
available to the animal [2]. For example, an animal may
use a resource disproportionately less than is available in
its home range, however it may have chosen its home
range because the resource was abundant [2].
In addition, availability is constrained by an individual’s

range of movement. To account for dynamic availability,
spatio-temporal point process models simultaneously esti-
mate the resource selection function and time-varying
availability kernels, which is the area an individual is cap-
able of moving to over a given period of time [4–6]. The
more commonly used method, a step selection function,
approximates the availability kernel by using conditional
logistic regression and a sample of “available” steps that an
individual could have taken (e.g., [7–9]). Recent methods
have used conditional logistic regression to separately ap-
proximate the movement and time-varying availability
kernels, in the vein of spatio-temporal point process
models (e.g., [10]). However, because all of these methods
are formulated in discrete time, inference is made only
when data were observed and not on the unobserved path.
In addition, aside from the spatio-temporal point process
of [6], none of these methods account for measurement
error in the observed locations.
In contrast to many resource selection studies, one of

the primary goals of continuous-time movement models
is to estimate the true path of an individual when it was
unobserved [6, 11–14]. Continuous-time movement
models can also incorporate measurement error and ir-
regular observations in time. However, movement
models are typically time consuming and computation-
ally intensive to fit, making it difficult to obtain inference
on multiple individuals [15]. If inference on multiple in-
dividuals is attainable, it may be possible to identify a
population-level response that is consistent across indi-
viduals, which would provide a rigorous link between in-
dividual choices and population-level patterns [1]. In

addition, understanding individual variability may help
identify individuals that associate more strongly with
certain features of the landscape [16].
A recently developed method, continuous-time Markov

chain (CTMC) modeling, incorporates an explicit move-
ment model to obtain information on travel speeds and dir-
ectionality. Travel speeds may provide indirect inference on
resource selection [17] and avoid absolute statements about
selection [2]. The CTMC method [18, 19] is fit in two
stages, where the first stage uses a continuous-time move-
ment model to obtain inference on where the individual
was when it was unobserved and account for measurement
error, while the second stage allows for evaluation of land-
scape drivers of animal movement. The second stage of the
analysis uses a Poisson specification with an offset to model
transition rates; therefore, statistical software based on a
Poisson likelihood can implement the CTMC movement
model [19]. The flexibility of the CTMC framework can ac-
count for time-varying responses to landscape drivers by
allowing coefficients to vary temporally [19], and it can also
be implemented in a Bayesian hierarchical framework,
allowing for inference on individual- and population-level
drivers. Previous applications of the CTMC framework fo-
cused on inference for single individuals and did not make
inference across multiple individuals [19, 20].
Quantifying individual variability in habitat selection,

while simultaneously estimating population-level pat-
terns, can be important for management and conserva-
tion issues where resources are heterogeneous or cause
points of conflict [21]. Some large carnivores, such as
cougars (Puma concolor), have undergone recent range
expansions into human-modified landscapes [22], but
they rarely use the heavily modified landscapes in urban
and suburban areas, instead relying on the rural and ex-
urban areas at the wildland-urban interface [21, 23].
Along with increased risk from human interactions
[23], human-modified landscapes may contain greater
numbers of both primary (ungulates, e.g., [24]) and
secondary (domestic animals, e.g., [25]) prey for large
carnivores compared to adjacent wild-land areas.
As early as 1998, the frequency of human-cougar inter-

actions along portions of the Front Range, a mountain
range extending north-south from Casper, Wyoming to
Pueblo, Colorado, have increased due to encroaching resi-
dential development, increasing cougar populations, and
increasing prey densities near human populations [26].
The Front Range Urban Corridor runs along the eastern
edge of the Front Range, while the Front Range itself con-
tains a matrix of towns and areas that are managed for
recreational use by county, state, and federal agencies.
Human-cougar interactions have remained high in recent
years (Mat Alldredge, Colorado Parks and Wildlife, per-
sonal communication), and cougars have been observed
using developed areas in the Front Range as a hunting
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ground [27, 28]. In addition, due to their desirable qual-
ities, regions adjacent to protected areas have higher hu-
man population growth compared to growth in rural,
non-protected areas [29], increasing the potential for
human-wildlife conflict [30].
Given the increasing potential for human-wildlife conflict

as development permeates rural and wildland areas along
the Front Range and elsewhere in the West, we sought to
extend previous work by explicitly modeling fine-scale
cougar movement to identify key drivers of their behavior,
and in doing so, better understand their use of the
wildland-urban landscape in both space and time. Many
cougar studies do not explicitly model movement,
and instead focus on resource selection; the animal
locations used for inference were sometimes ob-
tained only during daylight (e.g., [31–33]), obtained
during night and day but were treated equivalently
(e.g., [34]), or obtained at unspecified times (e.g.,
[35, 36]). Inference on time-varying behavior has
been limited to separate analyses on discretized tem-
poral periods (e.g., [17, 22]). Some studies have also
focused exclusively on kill site and hunting locations
(e.g., [27]) or non-kill site locations (e.g., [17, 22]).
We used the CTMC framework to model individual-
and population-level cougar responses to landscape
features in continuous time, which allowed for direct
inference on how behavior varied at a temporally
fine scale, given what was available. In addition, by
using a hierarchical modeling framework, we
accounted for individual-level variation, which may
be a function of the spatial distribution of prey items
or the behavioral flexibility of a generalist predator

[21, 37], while still obtaining population-level infer-
ence across a suite of individuals.

Methods
Data collection and study area
As part of an ongoing study by Colorado Parks and
Wildlife (CPW), cougars were trapped and fit with glo-
bal positioning system (GPS) collars and released along
the Front Range of Colorado (CPW ACUC 01–2008;
Fig. 1). We focused on 19 adult individuals (M = 5, F =
14) that were monitored April 1–15 2011, 21 adult indi-
viduals (M = 7, F = 14) that were monitored during June
16–30 2011, and 21 adult individuals (M = 3, F = 18) that
were monitored October 1–15 2011. The time periods
of interest were chosen for two reasons: first, because
observations were available for a large number of indi-
viduals, which is critical for making population-level
inference across individuals, and second, because we
were interested in examining seasonal differences in
cougar movement due to temporal variability in the
landscape-level covariates. For example, we expected a
strong response to prey-based covariates year round
but with seasonal shifts to reflect seasonal changes
in prey availability. In June, mule deer fawns are
born, and form a primary prey source for cougars
[38] and are at a disproportionately high risk for
predation [39]. However, cougars have been observed
relying on smaller prey items in April, potentially
due to competition with other species, and by Octo-
ber fawn predation has decreased and their diet
switches to deer and elk (Mat Alldredge, CPW, per-
sonal observation).

Fig. 1 Map of Colorado counties, with the cougar movement study area plotted in gray (Fig. 1a). Elevation (m; Fig. 1b) and land classified as
developed (dark gray is < 10 acres/unit; Fig. 1c) is shown for the study area and surrounding area
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Cougars were trapped using cage traps, hounds,
and foothold snares, and the minimum difference
between trapping and the analysis window was
12 days, with the average time from trapping to ana-
lysis being 114 days for April, 130 days for June, and
235 days for October. One individual (AF69) was
darted and relocated mid-analysis (April), however
we generated the CTMC data separately for each
period before making inference on movement drivers
across the observation period. All individuals were
monitored with Vectronics collars (Vectronics
GmbH, Berlin, Germany) programmed to obtain
fixes every 3 hours.
Our study area comprised a 2,700 km2 region in

the Colorado Front Range to the north-west of Den-
ver (Fig. 1). The study area consisted of a matrix of
private (43%) and public (57%) land [27]. Private
land included areas of rural, exurban, suburban de-
velopment, and small towns. Public land was man-
aged by federal, state, and municipal governments
for recreational activities or as open space. Road
density was, on average 1.6 km/km2, but ranged
from no roads to 16.6 km/km2. Elevation ranged be-
tween 1,522 and 4,328 m, generally increasing east
to west, with development decreasing along a similar
gradient. Ponderosa pine, Douglas fir (Pseudotsuga
menziesii), lodgepole pine (Pinus contorta), and
spruce-fir (Picea engelmannii-Abies lasiocarpa) were
the predominant non-agriculture vegetation types, in
order of dominance from east to west. Cougar dens-
ity was approximately 2.4 individuals per 100 km2

(Mat Alldredge, CPW, personal communication). Na-
tive herbivores (elk and deer) form the predominant
component of cougar diet in the region, with a
smaller contribution from domestic species (pets and
livestock) and synanthrophic wildlife [40]. However,
the proportion of domestic and synanthropic species
in the diet varies with cougar location along the
wildland-urban gradient [28].

Stage 1: Continuous-time Markov chain model
We used a Bayesian hierarchical CTMC model to
evaluate drivers of cougar movement; this model is
an extension of the model proposed by [19] and al-
lows for inference on movement rates and direc-
tional bias, as opposed to use, in continuous time
and discrete space. The initial step in the CTMC
framework is to estimate a continuous movement
path from the observed data points. We used the
functional movement model developed by [13] to
account for measurement error and predict loca-
tions every 10 minutes for the selected 2 weeks of
each month. The functional movement model can

be implemented using the fmove.bayes function
in the ctmcmove package [41]. The smoothness of
the imputed paths can be controlled using the argu-
ments associated with the precision matrix and the
shape and scale parameters of the inverse gamma
prior for the partial sill parameter of the spline
basis coefficients. The details of the functional
movement model are beyond this manuscript, but
for the purpose of reproducibility we note that we
used prior knowledge to fix the standard deviation

of the measurement error to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logð10=4Þp

, and mod-
eled the variance of the basis functions using a
prior consisting of a lag two conditional autoregres-
sive precision matrix with the partial sill modeled as
an inverse gamma with shape and scale parameters
equal to one. Additional details of the functional
movement model can be found in [13, 14, 41, 42].
Although the CTMC method is computationally

efficient in terms of speed, there are trade-offs be-
tween the duration of the time-period of interest,
the temporal resolution of the path interpolation,
and the spatial resolution of the rasters, which to-
gether can create extremely large and difficult to
store data frames. In addition, when the latent vari-
able formulation is used, the discrete cell sequence
must be contiguous, meaning that the spatial and
temporal resolutions must match (e.g., an individual
cannot move further than one grid cell between
time points). In our analysis, the time-period of
interest (2 weeks), temporal resolution (10 min in-
tervals), and spatial resolution (100-m by 100-m or
1 ha), were selected to focus on fine-scale move-
ment decisions. Additionally, crossing a 100 m2 area
encompasses a cougar’s ability to move over a
ten-minute interval [17]. To account for uncertainty
in the true movement path, a random subset of
imputed paths from the posterior predictive distri-
bution of the movement model were spatially dis-
cretized to a latent variable formulation with a cell
size of 100-m by 100-m, which was the lowest reso-
lution among the available covariates.
The CTMC model consists of a product of two

components: the time an individual spends in a grid
cell and the direction that an individual moves
when it leaves a grid cell. The time an individual
spends in a grid cell (motility) is exponentially dis-
tributed, such that a large rate parameter corre-
sponds to fast movement out of the cell. When an
individual leaves a grid cell, the probability that they
move to a particular neighboring grid cell (direc-
tionality) is the ratio between the movement rate
into that cell and the sum of the movement rates
into all neighboring grid cells. Therefore, higher
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proportional rates indicate directional bias in move-
ment. Thus, movement rate parameters, which are a
function of covariates (i.e., landscape variables that
correspond to the position of the cell on the land-
scape), control both motility and directionality.
Hanks et al [19] showed that the likelihood of the
CTMC model (i.e., the product of the motility and
directional components) for movement can be
expressed as a Poisson GLM using a latent variable
formulation.
In the latent variable formulation, each transition cor-

responds to four data points (the four neighboring grid
cells); the response variable is equal to one if the neigh-
boring grid cell is the cell that the individual transitioned
into and zero otherwise. Modeling the latent variables
(zeros and ones) as Poisson random variables with an
offset for the amount of time an individual spends in a
grid cell results in a likelihood that is equivalent to the
CTMC likelihood. This allows inference to be obtained
using standard GLM software, and the R package
ctmcmove facilitates creation of the CTMC latent vari-
able formulation [41]. Full CTMC details are available in
Additional file 1.
Using multiple imputed paths accounts for the uncer-

tainty in the true path of the individual and is a process
version of multiple imputation [15, 18, 19, 43], a method
frequently used for missing data [44]. Process imputation
is more computationally efficient than using the entire pos-
terior distribution, but still approximates the uncertainty
associated with the unobserved path. We generated 30 im-
putations for each individual [19, 43], using 20 imputations
to fit the models for individual-and population-level infer-
ence on transition rates and 10 imputations to calculate
the posterior predictive score that was used to select
regularization terms. Regularization shrinks the effect of
unimportant covariates toward zero to prevent over-fitting
and, in a Bayesian context, this is achieved by using an
informative prior for the coefficients [45].

Stage 2: Poisson models for movement inference
We used a hierarchical generalized linear model (H-GLM)
for individual- and population-level inference on average
cougar behavior, as measured by movement rates and dir-
ectional bias, as a function of landscape features. Because
cougars and humans are active at different times through-
out the day, we proposed an additional model, a hierarch-
ical generalized additive model (H-GAM), to account for
individual- and population-level diel time-varying behavior.
Covariates were centered and scaled to the individual,
meaning that the coefficients are relative to the mean and
standard deviation of the values that each individual
encountered during a given two-week period. This is simi-
lar to the idea proposed by [2], where selection was

determined by comparing some measure of usage and
availability of a landscape feature on an individual basis.
The hierarchical component of the model allows
individual-level responses to vary around a population-level
mean response, where both the individual and
population-level estimates are obtained simultaneously.
In the CTMC framework, the response variables, zij, were

a sequence of zeros and ones, where zij~Poisson(λij), for i =
1, …,T and j = 1, …, J, where T was the total number of cell
transitions, and J was the number of individuals. Landscape
covariates were incorporated using the log link function,
such that logðλijÞ ¼ logðτijÞ þ x0ijβ j . The residence times

were represented by the constants τij, and the landscape
variables by xij. The parameter βj was a vector of P
individual-level coefficients that arose from the
population-level distribution β j � Nðμβ;ΣβÞ . The covari-

ance matrix, Σβ ≡ σ2β diagðϕÞ , where the vector ϕ scaled

the value σ2β to each coefficient. The vector of scaling

parameters consisted of a one for p = 1 (ϕ1 = 1) and was
modeled as logðϕpÞ � N ð0; 0:04Þ for p = 2, …, P. The
population-level distribution had a mean that was modeled
with a multivariate normal distribution μβ � Nð0; σ2μIÞ ,
where I is the identity matrix. Both σ2β and σ2

μ were used as

regularization terms, where σ2β was selected a priori and

σ2μ ¼ 0:1 , to shrink the coefficients toward zero; this pre-

vented over-fitting and allows for correlated predictors [45].
The H-GAM was formulated as a varying coefficient

model [46], where the response to covariates varied over
space or time. By expanding the landscape covariates
with a basis function [47], we created a new vector, vij,
that was the Kronecker product of the P length vector of
covariates, x0ij , and the Q length vector of the values of

the basis at the time of transition i, w(i). For diel move-
ment, we used cubic cyclic spline basis functions (w(i)),
because they constrain the start and end points of the
varying coefficients to be equal, which is an important
property for time spans that are cyclic in nature. The
GAM for hourly movement was similar to the GLM, ex-
cept logðλijÞ ¼ logðτijÞ þ v0ijα j , where αj was a vector of

length PQ. Each parameter in αj was the collective effect
of the basis function and the corresponding covariate at
the time of transition i. Using the vector w(i), αj can be
back-transformed to obtain the time-varying effect of the
covariate. In the hierarchical framework α j � Nðμα;ΣαÞ ,
where Σα ≡ diagðσ2αϕÞ . The vector ϕ again reduced the
number of parameters we need to select a priori by scaling
the σ2

α term to each parameter, and μα � Nð0; σ2μIÞ. Both
σ2α and σ2μ served as regularization terms, where σ2

α was se-

lected a priori and σ2μ ¼ 0:1.

Finally, to assess whether males and females exhibited
different amounts of temporal variation in their response
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to potential movement drivers, we fit the GLM and
GAM models to males and females separately for each
time period. This resulted in four models: 1.) a GLM fit
to all individuals, 2.) a GAM fit to all individuals, 3.) a
GLM fit to females and a GAM fit to males, 4.) and a
GAM fit to females and a GLM fit to males. We calcu-
lated the posterior predictive score for each model (i.e.,
the sum of the posterior predictive score for the models
fit to males and females separately) and compared the
scores across models within each month.
Models were fit using a Markov Chain Monte Carlo

(MCMC) algorithm written in R [48]. We performed
adaptive tuning over an initial 50,000 MCMC iterations.
We used the selected tuning parameters as constants in
the subsequent 50,000 iterations that were used to calcu-
late the posterior predictive score for the a priori
regularization parameter grid-search. The final models
were fit using 100,000 MCMC iterations with a burn-in
period of 10,000 iterations.

Landscape covariates
Each covariate can be included as either a motility or
directional driver of movement in the CTMC model.
Motility covariates are based on the value of the grid cell
that the individual is in currently and control the abso-
lute rate of movement; positive coefficients indicate fas-
ter movement with increasing values of the covariate
(and slower movement with decreasing values), and
negative coefficients correspond to faster movements
with decreasing values of the covariate (and slower
movement with increasing values). Directional covariates
account for the correlation between movement and the
gradient of a covariate and contribute to the probability
that an individual moves toward a grid cell. The direc-
tional drivers were calculated such that a positive coeffi-
cient indicates that individuals move predominantly in
the direction that the covariate decreases (decreasing
distance, such that they orient toward a feature),
whereas a negative coefficient indicates that individuals
move in the direction that the covariate increases (in-
creasing distance, orient away from a feature). All rasters
were aggregated to a 100-m by 100-m resolution, which
is within the distance that a cougar might typically move
over a ten-minute interval [17]; individuals cannot skip
grid cells (enter a non-neighboring cell), therefore the
spatial resolution of the rasters should reflect our prior
knowledge about movement speeds.
We hypothesized that a number of landscape covari-

ates may contribute to transition rates and directional
bias of cougars: mule deer (Odocoileus hemionus)
utilization (as a proxy for availability), distance to near-
est potential kill site, distance to nearest structure, dis-
tance to nearest road, elevation, heat insolation load
index, and topographic wetness. We also used an

autoregressive parameter to account for directional per-
sistence, or an individual’s tendency to move in the dir-
ection in which it was already moving [19].
Prey availability is a driving factor in cougar habitat se-

lection. For example, cougars in western Washington used
areas where suspected prey availability was high, such as
low-elevation, early successional forests, and areas near
water [21], and [27] observed cougars foraging in areas
with high mule deer utilization. We approximated prey
availability using two covariates: annual mule deer
utilization and nearest potential kill site. The model aver-
aged prediction for mule deer utilization [49] approximates
prey availability given a suite of landscape covariates. We
hypothesized that cougars would move slower in areas
with high values for mule deer utilization and orient to-
ward areas of high mule deer use during crepuscular and
nocturnal movements [21, 27, 50]. Blake et al [51] found
that many of the landscape variables that contribute to the
location of predation events were the same as those con-
tributing to non-predation habitat use, which led them to
determine that cougars spend the majority of their time
moving across the landscape in hunting mode. Including
the location of a potential kill site may act as a proxy for
unmeasured landscape variables and non-mule deer
prey presence. In addition, potential kill sites repre-
sent known spatially recursive behavior based on
memory and perception of the landscape [52–54].
Memory and recursively used locations have been in-
corporated into resource-selection analyses using
individual-level intensity distributions [55, 56] and
model-based Dirichlet processes [57]. Potential kill
sites were determined using a clustering algorithm on
the GPS points, where a location was classified as a
potential kill site if two or more GPS locations, oc-
curring between the average time of sunset and sun-
rise for each two-week period, were found within
200 m of the site within a six-day period (modified
from [50, 58]). We calculated the distance (m) to
nearest potential kill site identified within the
two-week period to account for dependence in the
movement process due to the known temporary activ-
ity centers induced by the potential kill sites. Up to
nine potential kill sites were identified for each indi-
vidual during the observation window (two-weeks).
Although the data were used to generate the clusters,
the CTMC model is not assessing resource use, but is
determining whether speed and directionality vary as a
function of the location of the clusters (e.g., we would
not detect a response if they were not correlated with
variation in movement). We expected individuals to
move faster as distance to potential kill site increased,
because decreasing distance may correspond to an indi-
vidual returning to a cached kill, and caches are more
often located in areas of high vegetation cover [59].
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We calculated distance to nearest structure (m) as the
Euclidean distance to the nearest man-made roofed
structure [49]. Distance to road was calculated using
major roads data (i.e., a major highway primarily for
through traffic usually on a continuous route and streets
whose primary purpose is to serve the internal traffic
movement within an area) obtained from Colorado De-
partment of Transportation. Due to increased human ac-
tivity around structures and roads, we expected cougars
to move faster when closer to roofed structure and dis-
tance to nearest road [17, 33, 60]. However, females may
respond less to structures and roads than males, given
that there may be additional factors, such as food limita-
tion and offspring, which drive them to tolerate
human-modified landscapes [37, 61]. We also expected
there to be high temporal variability in the response to
structures, because individuals have been observed
avoiding areas of anthropogenic activity less at night,
while avoiding contiguous forest habitat less during the
day [22].
We used a digital elevation model (Fig. 1) to

characterize elevation. Blecha et al [27] found that cou-
gars avoided foraging in higher elevations, but [37] ob-
served cougars selecting for higher elevations in
developed areas. We expected cougars to show high
temporal variability in their directional response to ele-
vation, with cougars moving toward lower elevations
when they are hunting (main prey is concentrated in
lower elevations) and toward increasing elevations at
other times. We used a raster based on the continuous
heat insolation load index ([62], modified from [63]), to
measure the accumulation of solar radiation at that loca-
tion over the course of a year (MJ/cm2/yr). Heat insola-
tion is higher on south-facing slopes that are more xeric
and open than north-facing slopes [64]. Cougars have
been observed using less rugged terrain for travel [17],
selecting for south-facing slopes containing shrubs [22],
and avoiding foraging on north-facing slopes [28].
Therefore, we expected that cougars may orient toward
areas of high heat insolation, but move quickly through
them. The topographic wetness plus metric (TWI+) pre-
dicts soil moisture based on slope, as originally de-
scribed by [65], and aspect, as modified by [66]. Because
cougars have been observed selecting for and hunting in
riparian areas [21, 33, 60, 61], we expected cougars to
move slowly in areas of high topographic wetness and
demonstrate temporal variability in their directional re-
sponse (toward areas of increasing topographic wetness
when hunting).
We also analyzed a subset of individuals and the inter-

action between housing density and their response to
deer utilization and distance to nearest kill site. Despite
cougars demonstrating avoidance of high housing dens-
ities while foraging (locations preceding a successful kill

and following previous prey handling), kill sites were
positively related to housing density [27]. In addition,
the temporal variability in the response to anthropogenic
structures that was observed by [22] was stronger for
cougars in rural, rather than wilderness, areas. There-
fore, these are the two variables that we expected to vary
most with housing density due to the potential
trade-offs between increased prey abundance but in-
creased mortality risk. To determine the effect of hous-
ing density on the response of cougars to deer utilization
and potential kill sites, we discretized the landscape into
developed (< 10 acres/unit) and undeveloped areas (Fig.
1). Only 13, 15, and 17 individuals for April, June, and
October, respectively, were used in the secondary ana-
lyses because the remaining individuals did not spend
time in developed areas in the selected two-week pe-
riods. We were unable to evaluate an interaction in the
H-GAM (time-varying) framework due to high variabil-
ity in the percentage of locations for each individual that
were classified as occurring in undeveloped areas.

Results
There was no detectable effect of many of the landscape
covariates on average motility or directionality at a
population-level (Fig. 2). However, distance to potential
kill site emerged as the primary driver of both motility
and directionality in the GLM framework (Figs. 2 and 3).
As individuals increased their distance from a potential
kill site, their transition rate increased (Fig. 3a). In
addition, individuals oriented movement toward their
potential kill site (Fig. 3b). We also detected significant
directional persistence (95% CI for April: 1-1.15, June:
1.03-1.16, and October: 1.07-1.20), or residual autocor-
relation, indicating that individuals tended to continue
moving in the direction they had previously been mov-
ing, after accounting for landscape features.
Of the remaining potential drivers of movement, the

largest seasonal differences were observed in the effect
of heat loading, elevation, distance to nearest roofed
structure, and distance to nearest road; however, the
95% credible intervals consistently overlapped zero
(Fig. 2). Based on the posterior mean, individuals were
observed moving slower at higher elevations in April, but
faster in June and October (Fig. 4a). In contrast, individ-
uals moved faster than average in areas where heat loading
was high in April, and to a lesser degree, June, but moved
slower with higher heat loading in October (Fig. 4b). We
detected a consistent seasonal effect of distance to struc-
ture, but the posterior mean was negative, meaning that
individuals moved faster as distance to structure de-
creased (Fig. 4c). A similar pattern was detected with dis-
tance to roads, however the effect became positive in
June, with individuals moving faster as distance to roads
increased (Fig. 4d). In most cases, individual-level
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uncertainty tended to be high, with a few individuals
showing statistically significant responses despite a
non-significant population-level response (Figs. 3, 4).
Our results suggest that distance to nearest potential

kill site was also the predominant motility and direction-
ality driver in the diel time-varying framework (H-GAM;
Figs. 5 and 6). However, the strength of the motility re-
sponse to distance to nearest potential kill site varied
over time and with seasons. The strongest motility re-
sponse occurred around dawn, decreased steadily during
daylight hours, and then increased around dusk (Fig. 5).
The magnitude of this variation was strongest in June
and October, and weakest in April (Fig. 5). The strength
of the directional bias toward potential kill sites also var-
ied through time, but was consistent across seasons
(Fig. 6). The evidence for an effect of potential kill sites
on directionality suggests that individuals orient less to-
ward their kill site during daylight hours, and may even
orient away from their potential kill sites during late
afternoon (Fig. 6).
While the 95% credible intervals overlapped zero for

much of the day, we detected modest temporal re-
sponses in both motility and directionality to elevation
and distance to nearest structure (Fig. 7). The motility
response to elevation varied seasonally, as in the GLM
framework. The average negative response to elevation
observed in April (Fig. 4a) was reflected in a negative re-
sponse to elevation around dawn (individuals move
slower as elevation increases), with a slightly positive re-
sponse later in the day (Fig. 7a). We observed little time
variation in June, but the pattern observed in October
was the opposite of April, with individuals moving faster

with increasing elevation around dawn, with a decreas-
ing effect through the rest of the day (Fig. 7a). Individ-
uals moved toward higher elevations mid-day and
toward lower elevations at other times, a pattern that
was consistent across seasons (Fig. 7b). The strongest
negative effect of distance to structure on motility (indi-
viduals move faster as distance decreases) occurred
around dawn and dusk for all seasons (Fig. 7c). The
effect on directionality was less consistent, with orien-
tation toward roofed structures just after dawn,
followed by orientation away from structures, in April
and June; this pattern shifted toward pre-dawn in
October (Fig. 7d).
In addition, we did not see evidence for an interaction

between development and deer utilization, which
remained a statistically insignificant driver of cougar
movement rates and directionality in both the H-GLM
and H-GAM models. The positive effect of distance to
potential kill site on speed (faster as distance to kill site
increases) and directional bias (more orientation toward
the kill site) was consistent between developed and un-
developed areas (Fig. 8a). However, we detected a differ-
ence in average movement rate between the two areas,
with individuals in each month moving faster in devel-
oped areas (Fig. 8b).
Finally, the H-GAM for both sexes was the best model

in terms of predictive performance across all months,
whereas the GLM performed the worst (Fig. 9). The
models that were a mixture of a GAM and GLM, vary-
ing by sex, were generally equivalent (Fig. 9). The largest
difference between the two sex-varying models was ob-
served in October, when the better of the two models

Fig. 2 The mean and 95% credible intervals for the population-level mean effects of landscape covariates on movement rates (M) and
directionality (D) of cougar movement in the Colorado Front Range for two-week periods in April, June, and October 2011
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included time variation for males and no time variation
for females (Fig. 9).

Discussion
Fine-scale cougar movement
The observed response to distance to nearest potential
kill site over a short time period is potentially due to
cougars returning to the carcasses (e.g., spatial memory;
[52–54]) and unmeasured fine-scale covariates related to
landscape features that increase the likelihood of a suc-
cessful hunting attempt. Blecha et al [27] found that kill
sites, compared to preceding locations, occurred more
frequently in areas with higher housing densities and

lower topographic positions, such as drainage areas, des-
pite drainage areas having lower prey availability. We
did not measure hunting success, but we did find that
cougars moved toward lower elevations at dusk, when
cougars are likely to hunt or return to a carcass. We
found that individual response to nearest potential kill
site was variable within the two-week period and across
individuals; this is likely a function of timing of success-
ful kills and the size of the prey item, with stronger posi-
tive responses being correlated with larger prey (as
individuals return to the site over a longer period of
time). In addition, the variation in motility across
months may also be a function of the available prey

(a) (b)
Fig. 3 Posterior means and 95% credible intervals for the individual- and population-level static effects of distance to nearest potential kill site on
motility (Fig. 3a) and directionality (Fig. 3b) of cougar movement in the Colorado Front Range for two-week periods in April, June, and
October 2011
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(a) (b) (c) (d)
Fig. 4 Posterior means and 95% credible intervals for the individual- and population-level static effects of elevation (Fig. 4a), heat loading
(Fig. 4b), distance to nearest roofed structure (Fig. 4c), and distance to nearest road (Fig. 4d) on cougar motility in the Colorado Front
Range for two-week periods in April, June, and October 2011
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Fig. 5 Posterior means and 95% credible intervals for the population-level diel time-varying effect of distance to nearest potential kill site on
cougar motility in the Colorado Front Range for two-week periods in April, June, and October 2011. The gray box represents 0630 h to 1930 h.
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Fig. 6 Posterior means and 95% credible intervals for the population-level diel time-varying effect of distance to nearest potential kill site on
directionality of cougar movement in the Colorado Front Range for two-week periods in April, June, and October 2011. The gray box represents
0630 h to 1930 h
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Fig. 7 Posterior means and 95% credible intervals for the population-level diel time-varying effect of elevation (Fig. 7a, b) and distance to nearest
roofed structure (Fig. 7c, d) on motility and directionality of cougar movement in the Colorado Front Range for two-week periods in April, June,
and October 2011. The gray box represents 0630 h to 1930 h
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items during a given season. We observed the weakest re-
sponse to kill sites during April, before mule deer fawns are
born [38]. We also observed an increasingly strong positive
response to distance to kill site from dusk to dawn, imply-
ing that, from dusk to dawn, individuals moved increasingly
faster the farther away they were from a potential kill site.

Our results indicated that cougars moved slightly fas-
ter in areas with a higher heat insolation load index in
April compared to June and October. These areas cor-
respond to xeric, south-facing slopes, which, in the mon-
tane zone of the Front Range, mostly consist of open
stands of ponderosa pine, compared to the more dense

(a)

(b)

Fig. 8 Posterior means and 95% credible intervals for the population-level effect of distance to nearest potential kill site on motility and
directionality of cougar movement (Fig. 8a) and average movement rate (Fig. 8b) as a function of development (developed being < 10 acres/unit) in
the Colorado Front Range for two-week periods in April, June, and October 2011
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Fig. 9 Posterior predictive score distributions for the model set, where smaller values indicate better predicting models. The GAM fit to all
individuals performed the best in terms of predictive ability for all months
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north-facing slopes [64]. The more open forest floor
may facilitate cougars using south-facing slopes as travel
corridors, leading to greater transition rates. Similarly,
[17] found that cougars used less rugged terrain than the
surrounding area while traveling, while [22] found that
cougars selected for south-facing slopes and areas with
shrub habitat. The monthly difference in effect size for
the response to heat loading may be related to seasonal
changes in vegetation (shrub cover may be denser in
June, reducing speed) or a product of unobserved wea-
ther patterns (e.g., more snow on north-facing slopes
could lead to a greater tendency to use south-facing
slopes as corridors). Similarly, we also observed slower
movements at high elevations in April compared to June
and October; high elevation areas of the Front Range
may still contain snow in April, which could result in
slower movement rates at high elevations. The
time-varying directional response to elevation indicates
that individuals are moving to higher elevations during
the day, and then toward lower elevations at night. Ble-
cha et al [27] found that predation events, which typic-
ally occur at night, occurred at lower elevations, which
may explain the temporal pattern we observed. The dif-
ference among seasons for the dawn motility response
(slower [faster] at high [low] elevations in April, faster
[slower] at high [low] elevations in October) might also
be a response to unobserved fine-scale vegetation
changes or dietary shifts.
The documented response of cougars to disturbed and

developed landscapes varies in the literature, and is likely
a function of the level of disturbance encountered and
how disturbance was quantified. For example, [21] found
no difference in cougar movement rates in wildland and
residential areas throughout the day. However, [22] ob-
served that cougars avoided developed landscapes, while
also noting a temporal shift in usage of those areas, with
cougars avoiding areas near development more during
the day. On average, we observed a more negative rela-
tionship to distance from structures at dawn and dusk
compared to mid-day and evening (i.e., individuals
moved faster when closer to structures during dawn and
dusk than mid-day and evening, when there was a slight
positive relationship between speed and distance to
structure), which could be explained by increased hu-
man activity caused by the start and end of the workday.
However, the uncertainty was fairly large for the diel ef-
fect of distance to nearest roofed structure, despite sub-
tle positive and negative shifts. These minor differences,
and an overall lack of consistent response, could be ex-
plained by unmeasured spatial and temporal relation-
ships, such as individual interactions, fine-scale human
disturbance (e.g., recreational activities, noise, and con-
struction), and individual risk-avoidance strategies [67].
For example, [37] found that cougars showed stronger

avoidance of more consistent sources of anthropogenic
disruption, such as neighborhoods, than intermittent
sources, such as low-traffic roads. We detected a faster
average movement rate in areas with more development,
which is consistent with work by [17] and [68], who
found that individuals expended more calories and
moved further in developed areas, and [69] also found
that large mammal movement rates vary as a function of
local conditions. Distance to roads and structures may
not be adequate proxies for how cougars perceive an-
thropogenic disturbance, and alternative measures (e.g.
density or categorical variables), or responses (actual
road crossings, e.g., [70]), may be more relevant for cou-
gar movement behavior.
Other studies have detected significant individual vari-

ation [21, 37], and [61] and [37] found that selection dif-
fered between males and females. We did not see
consistent sex-specific responses to covariates, which
could be due to the timing of the observations; for ex-
ample, females may respond differently to males when
breeding, but similarly at other times. In addition, males
were underrepresented in our sample. Some of the unex-
plained individual variation could be due to the amount
of anthropogenic landscape features each individual was
likely to encounter in their movements [22, 61], as op-
posed to the amount of development in the immediate
vicinity during a given movement. Benson et al [61] also
hypothesized that the amount of development in many
studies of cougar habitat selection has been too low to
cause cougar behavioral changes.
We propose that our findings regarding a lack of evi-

dence for significant landscape drivers of movement may
have three potential biological causes. First, cougars are
generalists, therefore, they are expected to demonstrate
less habitat selection at the landscape scale than a habi-
tat specialist would [71]. Though we were assessing
movement, generalists may likewise demonstrate less
variation in speed and directionality as a function of the
landscape than would a specialist, or the risks and re-
wards present in the Front Range are not significant
enough to cause a detectable response in behavior. In
addition, individuals moving within an established home
range, such as in this study, may be acclimated (demon-
strating minimal change in behavior) to the disturbances
that they encounter during daily movements. Second,
significant individual-variation within a 24-h period
would make determining a consistent population-level
response difficult. Individual variation can occur across
and within individuals, and may be a function of the un-
measured internal state of the animal (breeding status,
body condition, and energetics), or external factors (in-
teractions with other individuals, fine-scale landscape
features, and unmeasured brief disturbances). Finally,
cougar movement may correspond to, or interact with,
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lower frequency environmental variation (e.g., weather
patterns and food availability). Comparing behavior
among years could be used to assess seasonal
consistency in observed patterns; however, due to the
difficulty of performing multiple comparisons of
time-varying effects, a study of among year differences
would likely need to focus on a particular season of
interest.

Modelling framework
Many of the hypothesized movement drivers did not
have a consistent statistically significant relationship
with movement, while other studies on cougars in the
same geographic area have found strong effects for land-
scape variables on cougar resource use while hunting
[27]. However, unlike RSFs and traditional SSFs (not in-
tegrated, e.g. [10]), the CTMC framework is measuring
the effect of landscape variables on speed and direction-
ality, not habitat selection. For example, cougars may se-
lect for areas with high mule deer use [27], but cougars
may not alter their speed based on the amount of mule
deer usage. Although there has been a recent develop-
ment that uses the limiting distribution of a CTMC to
estimate utilization density (home-range; [20]), the rela-
tionship between changes in speed and directionality
and habitat selection may vary by species. In addition,
although multiple imputation appropriately accounts for
the uncertainty in the unobserved true path, it does
introduce an additional source of variation that is not
accounted for when using only the observed locations.
In addition, the variation among imputed paths for each
individual will increase with measurement error, because
there is less information to constrain the realizations of
the true, unobserved path. Although measurement error
was minimal in our study, the added uncertainty intro-
duced by the multiple imputation framework may make
it difficult to detect statistically significant effects.
The varying coefficient modeling framework, imple-

mented in this study as a GAM, can reveal hidden
process dynamics [72] and allows for complex nonlinear
patterns that would be difficult to model in a traditional
framework (e.g., [73]). While we expanded each param-
eter in to the temporal space, one could make each co-
variate a function of another parameter, such as a
different temporal predictor (e.g., time since kill) or an-
other parameter in the model (e.g., distance to struc-
ture). Allowing the coefficients to vary in time (or
another covariate space) can also improve the predictive
ability of the model, as it did in our study. GLMs can
mask time-varying responses to covariates (e.g., [74]),
because the response variable is aggregated over the
time period of interest. Therefore, if the response of an
individual switches between positive and negative (faster
or slower movement rates), the estimated response will

be approximately zero. Studies have found that cougars
use a broader range of habitats for nocturnal movements
than for daybed locations [17] and demonstrate tem-
poral variability in their response to anthropogenic land-
scape features [22]. Therefore, restricting analysis of
locations to a particular temporal subset (e.g. day vs
night) may not be indicative of all behavior [75]. The
time-varying CTMC framework represents an important
step forward in detecting latent temporal patterns in ani-
mal movement and is especially useful when behavior is
known to vary in time.

Conclusions
Recursive events, as measured by potential kill site loca-
tions, were identified as the primary driver of motility
and directionality for cougars in the Front Range of Col-
orado. Observed cougars also moved faster, on average,
in developed areas compared to undeveloped areas.
Many other landscape features, including proxies for
anthropogenic development, did not have a strong
population-level effect on cougar movement, potentially
due to unexplained individual-level variation. We did
not detect a link between cougars that had reports of
human conflict and response to development. Cougars
have demonstrated different second- and third-order se-
lection to roads in previous studies [33], therefore, nuis-
ance individuals may select for, or end up in, home
ranges near human development, but do not respond
differentially to areas closer to development within their
home range [76]. The high degree of individual variation
suggests that, if agencies want to minimize human-wildlife
conflict, a “one size fits all” approach to cougar manage-
ment and conflict abatement will likely be unsuccessful
and management options should be varied and flexible. A
potential proactive mitigation of cougar conflict is to iden-
tify potential kill sites and orient recreation (e.g., trails,
camp sites) away from those areas. Kill site identification
tools, such as those developed by [27], could prove useful
in this regard.

We observed temporal variation in the population-level
response to some landscape features (potential kill site,
elevation, distance to structure), which highlights the im-
portance of considering time-varying effects of covariates
on movement behavior. Time-varying effects may be par-
ticularly important to consider when animal behavior is
known to vary in time and when temporally static covari-
ates may contain uncharacterized temporal variation (e.g.,
roads that vary in traffic load according to time of day and
season). This study is also the first hierarchical application
of the CTMC modeling framework, and demonstrates its
ability to provide computationally efficient inference on
individual- and population-level drivers of animal move-
ment behavior.
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