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Abstract

Background: Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend
to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities
may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the
effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity
model, we used neutral microsatellite genetic datasets of Canada lynx (Lynx canadensis), American marten (Martes
americana), fisher (Pekania pennanti), and southern flying squirrel (Glaucomys volans) to evaluate multi-species
genetic connectivity across Ontario, Canada.

Results: We used linear models to compare node-based estimates of genetic connectivity for each species to
point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we
are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape
context: habitat amount was more important than current density in explaining multi-species genetic connectivity
in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south
however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to
our expectations however, locations with a high probability of movement as reflected by high current density were
negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current
density was also associated with high effective resistance, underscoring that the presence of pinch points is not
necessarily indicative of gene flow.

Conclusions: Overall, our study appears to provide support for the hypothesis that landscape pattern is important
when habitat amount is low. We also conclude that while current density is proportional to the probability of
movement per unit area, this does not imply increased gene flow, since high current density tends to be a result of
neighbouring pixels with high cost of movement (e.g., low habitat amount). In other words, pinch points with high
current density appear to constrict gene flow.

Keywords: Landscape context, Landscape fragmentation hypothesis, Circuitscape, Multi-species connectivity,
Pinch point
Background
Much recent thinking about maintaining biodiversity in
the face of environmental change suggests that ensuring
adequate landscape connectivity is important. Indeed,
managing connectivity is considered by some to be one
of the key strategies for creating resilient landscapes and
adapting to climate change [1]. Landscape connectivity
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is defined as the degree to which the landscape facilitates
or impedes movement among resource patches and is
generally considered to be a species-specific trait of
landscapes that emerges as a product of landscape struc-
ture and species behaviour [2]. This is often referred to
as functional connectivity. Landscape connectivity is an
explicit management goal for many jurisdictions that
have natural heritage or land use plans with connectivity
targets [3, 4].
Given the species-specific nature of the landscape con-

nectivity concept, it is not surprising that many studies
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evaluate single-species landscape connectivity. For ex-
ample, single-species connectivity estimates have been
used as a means to assess suitable habitat for Eurasian
lynx (Lynx lynx), evaluate the effectiveness of vaccination
barrier strategies to control the transmission of rabies
virus, and identify the appropriate placement of road
mitigation measures to facilitate wildlife crossings in jag-
uars (Panthera onca) [5–7]. Single-species connectivity
can be a challenge however, for land use planning, when
multiple species are of conservation interest. As such,
multi-species connectivity maps have been of interest in
recent years [8, 9]. There are generally two different ap-
proaches identified for developing multi-species con-
nectivity maps. First, a series of single-species maps can
be developed, and then overlaid to produce a consensus
map [10]. This approach may be impractical for large-
scale conservation however, when there are numerous
species of conservation interest. Alternatively, a single,
multi-species map can be produced, and attempts made
to validate this map to establish its extent of generality
[11]. Such multi-species connectivity maps are an at-
tractive option for managers, since they have the benefit
of simplicity and practicality.
Functional connectivity implies that animals are suc-

cessfully moving through landscape elements and func-
tioning as effective members of the local population via
successful reproduction and gene flow [12]. Thus, many
have argued that gene flow can be used to directly meas-
ure such effective movement [13], and numerous exam-
ples exist where gene flow is evaluated as a measure of
functional connectivity [14–17]. Gene flow has been
used in natural heritage or land use planning, and where
multi-species connectivity is a goal, a logical consequence
is that habitat networks should provide multi-species
genetic connectivity [18]. The concept of multi-species
genetic connectivity is relatively new, but has been used
recently to assess coral reef networks [19, 20]. We are
aware of only a few studies where this has been assessed
in terrestrial environments. For example, Mech and
Hallett (2001) used gene flow to evaluate the effectiveness
of corridors for red-backed voles (Myodes gapperi) and
deer mice (Peromyscus maniculatus) [21], and more
recently Wultsch et al. (2016) compared effects of habitat
fragmentation on gene flow of three large cat species
in Belize [22]. In contrast to the field of genetics,
multi-species connectivity has been addressed in several
landscape ecology studies [23–25].
One challenge in evaluating how landscape structure af-

fects gene flow arises due to the pairwise nature of gene
flow estimates (e.g., FST). Similarly, measures of landscape
connectivity may also be pairwise. For example, the most
popular methods in recent years for measuring connectiv-
ity of landscapes are least cost paths [26] and circuit the-
ory [27, 28], both of which provide pairwise measures
[29], which quantify the degree of connectivity or isolation
between two locations. Traditional statistical tests used to
evaluate pairwise genetic distances have come under re-
cent scrutiny due to the potential for spurious correlations
[30]. Mantel and partial Mantel tests have been used to
link multivariate landscape and genetic data, by measuring
correlations between pairwise genetic distances and corre-
sponding geographical distances. These tests may have
low power [30, 31] and high error rates [31–34] however,
suggesting benefits of analytical approaches that avoid
pairwise data.
Recently, Koen et al. [35] evaluated several at-site mea-

sures of population-level gene flow. At-site measures dif-
fer from pairwise measures in that estimates rely on
properties of each sampled location, rather than on pairs
of locations. Koen et al. [35] employed a network-based
analysis, whereby nodes and edges were site-specific
samples and genetic distances between samples, respect-
ively. A simulation study and an empirical validation
demonstrated that measures of network edge weight
could accurately describe gene flow at nodes due to the
settlement phase of dispersal, where settlement is the es-
tablishment of residency at a location following a breed-
ing or natal dispersal [35]. Thus, node-based measures
could be used as point estimates of genetic connectivity,
and compared to point estimates of landscape structure;
an approach that would not rely on pairwise data ana-
lysis. Point estimates of landscape structure have typic-
ally included empirical measures of habitat amount and
fragmentation estimated in neighbourhoods of various
radii [36–38]. We propose to evaluate an alternative
measure of landscape connectivity – a point-based sum-
mation of current density, estimated via circuit theory.
To our knowledge, current density has not been used
before as a measure of genetic connectivity.
Least cost path analysis (LCP) involves estimating the

optimal, lowest cost route between source and destination
nodes [26]. This measure has been widely used, and
shown to effectively measure connectivity in some situa-
tions [15, 39]. However, a drawback of LCP is that it
assumes that animals have knowledge of the optimal
route, which may not be a valid assumption in some cases,
especially in the face of a process such as gene flow, which
may be widespread. An alternative approach has more
recently been proposed using circuit theory that allows
the estimation of multiple paths [27]. Circuit theory takes
advantage of the analogy between random walks and elec-
tricity travelling on a circuit [40] to depict movement
probability. Numerous applications of this approach are
also documented in the literature (e.g., [41–43]).
There are three key features of circuit theory important

to highlight for our purposes. First, one output of circuit
theory is called current density, which is spatially refer-
enced, and is proportional to the probability of movement
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by a random walker [28, 40]. Current density is not a pair-
wise measure. Rather, it can be sampled at a point, and as
such, is distinct from the other common circuit theory
measure, resistance distance (or effective resistance),
which is a pairwise measure of isolation. Second, current
density maps depict emergent effects that exist apart from
simple measures of habitat amount. For example, geomet-
ric pinch points stand out as areas of high movement
probability regardless of underlying habitat conditions
[27]. Finally, circuit theory estimates can be systematically
undertaken in an omnidirectional manner [11], such that
unbiased point samples of current density can accurately
estimate local movement probability.
Our main objective was to compare two node-based

estimates of connectivity. We compared a measure of
multi-species genetic connectivity to another measure
derived from omnidirectional current density maps. We
used a previously developed terrestrial multi-species
connectivity map developed from circuit theory for
natural heritage planning in Ontario, Canada [11, 44].
Koen et al. [11] initially developed the methodology for
this map, and used fisher (Pekania pennanti) telemetry
and herpetofaunal roadkill data to validate the results for
a study area in eastern Ontario. The methods were sub-
sequently applied by Bowman and Cordes [44] across
the full province of Ontario. We sought to evaluate this
Fig. 1 Sampled node locations spatially overlayed on the current density s
(Pekania pennanti), Canada Lynx (Lynx canadensis), American Marten (Martes a
Current density values have been standardized to a mean of zero, Red to blue
ranged between about 42.3°N (S7) and 51.3°N (L20)
independently-derived, Ontario connectivity map using
multi-species genetic data to test the hypothesis that
areas of high connectivity are multi-species gene flow
hotspots. We used neutral microsatellite genetic datasets
for fisher, American marten (Martes americana), south-
ern flying squirrel (Glaucomys volans), and Canada lynx
(Lynx canadensis) sampled in Ontario to test the
hypothesis. We also compared the current density map
and genetic connectivity estimates to a more traditional
measure of landscape structure based on buffered
estimates of habitat amount.
Methods
We used existing population genetic datasets of four ter-
restrial mammal species to model multi-species genetic
connectivity across Ontario, Canada (Fig. 1). These data-
sets included neutral microsatellite profiles from 702
Canada lynx at 14 loci [11], 653 American marten at 12
loci [41], 657 fisher at 16 loci [45, 46], and 278 southern
flying squirrels at 7 loci [47, 48]. From these datasets, we
removed individuals that had more than 35% missing
alleles. We selected these four species as they were all
terrestrial mammals occurring in forested habitats of
Ontario for which we had genetic profiles. Our objective
was to test whether a multi-species connectivity map
urface. Node IDs are species specific, where F, L, M, S represent Fisher
mericana), and Southern Flying Squirrel (Glaucomys volans) respectivly.
values indicate high to low current density, respectively. The study area
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could predict the genetic connectivity of all four species
despite species-level differences in movement behaviours.
Samples were collected across the Ontario study area

between about 42.3°N and 51.3°N. The southern portion of
the study area was dominated by agriculture and urban
development. Forests in this region represented a transition
between southern temperate forests and boreal forests. The
northern end of the study area was boreal forest, with a
much lower human population density, lower agricultural
intensity and little urban development. Fisher and flying
squirrel samples were concentrated in the southern portion
of the study area, whereas marten and lynx samples were
concentrated in northern Ontario (Fig. 1).
We constructed population graphs [49] from the neu-

tral genetic datasets to model and visualize genetic con-
nectivity between sites for each species. This was
accomplished by using the software packages gstudio
and popgraph [50, 51] in R (version 3.2.4) to construct
networks of connectivity among sample sites represent-
ing different populations. All species were sampled using
a lattice intended to evaluate population-based network
structure (e.g., [45]). In each case, populations were sam-
pled at multiple locations, separated by distances that
exceeded typical daily movements for the species in
question. Sampled sites were considered network nodes,
and the connections between pairs of sites were consid-
ered network edges. Networks can be illustrated by a
series of nodes oriented in multidimensional space that
represent the allelic diversity from that site. Each node is
connected by a series of edges representing genetic simi-
larity between nodes; in a saturated network all nodes
are connected by edges. Each edge length is proportional
to the multivariate genetic covariance between nodes.
Within a saturated network, some edges do not ad-
equately describe the overall among-population genetic
covariance structure, so we pruned edges that did not
compromise the fit of the population graph model to the
marker-based population genetic data as described by
Dyer and Nason [49]. The shortest path length between
nodes along the pruned network is referred to as condi-
tional genetic distance (cGD) [52].
We used a previously published current density map

for Ontario that was derived from a circuit theory ap-
proach to model omnidirectional, multispecies connect-
ivity based on landscape resistance [11, 44]. The current
density map was constructed using Circuitscape v4.0
(www.circuitscape.org) which models a rasterized land-
scape as a circuit board where each pixel represents
resistance to wildlife movement. Expert opinion was
used to assign land cover to one of three resistance
values as outlined by Koen et al. [11] and at a resolution
of 100 m. Circuitscape was used to simulate electrical
current flow between source and destination points,
where the resulting current density in a pixel is
proportional to the probability of animal movement. Im-
portantly, source and destination points for the circuit
theory analysis were independent of nodes sampled for
our genetic networks. Instead, node pairs were randomly
placed outside of the perimeter of the study area, ac-
cording to the procedure of Koen et al. [11]. The place-
ment of nodes outside of the study area removes the
build-up of current near nodes within the study area
that has been referred to as ‘node placement bias’ [11],
and the random placement of nodes allows the creation
of an omnidirectional map. Therefore, we used a model
of omnidirectional, multi-species movement probability
across a heterogeneous landscape grid of varying perme-
ability. For more details and description of the method-
ology see Bowman and Cordes [44] and Koen et al. [11].
The expert-derived cost surface had 3 levels of per-
meability, where 10 was the lowest cost including
most types of natural cover, 100 was semi-permeable
cover types, and 1000 was the highest cost, including
mostly anthropogenic and urbanized land cover types
(see Additional file 1: Appendix 1). A novelty of our
approach is the use of a point-based sampling method to
estimate current density at buffered sample locations
via circuit theory. We were able to take this approach
because Bowman and Cordes [44] systematically assessed
current density across Ontario using the omnidirectional
methodology of Koen et al. [11]. Therefore, a point sample
of current density should be a meaningful estimate of
animal movement and gene flow.
We calculated our measure of node-based genetic con-

nectivity using the average inverse edge weight of cGD
for each sampled node, which has been shown to be
positively correlated to genetic connectivity [35]. We
standardized this measure among species by calculating
z-scores, thereby placing the measure of genetic con-
nectivity for each species on the same scale. This made
it possible to exclude species as an additional covariate
in our models. We compiled the mean and standard de-
viation of current density at 3 different geographic ex-
tents by buffering each node and extracting these values
at radii of 6, 20 and 120 km to cover a range of distances
relevant to the species being studied. Several of the co-
variates (cost and current density at different extents)
were highly correlated (Additional file 1: Appendix 2);
consequently we did a principal component analysis
(PCA) and used the first 4 principal components (PCs)
that accounted for ~85% of the total variance. We then
used the loadings of our covariates to interpret our sub-
sequent models. We accounted for spatial dependency
by including spatial coordinates of sampled nodes as
additional independent variables and we also accounted
for sample size using the number of individuals geno-
typed at each node. We wanted to know the standard-
ized effect of each of our covariates; therefore we also

http://www.circuitscape.org/
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standardized these values using their z-scores. We carried
out our modelling over three different areas. We first
modelled the entire region, encompassing all of the sam-
pled nodes of all four species. We then separately mod-
elled the north and the south, including only the species
with northern (Canada lynx and American marten) and
southern (fisher and southern flying squirrel) distributions
in the respective models. We used ordinary least-squares
regression to model standardized average inverse edge
weight against longitude, latitude, sample size, and our
four PCs representing functional connectivity.

Results
Our population graphs indicated that there was relatively
high connectivity within each of the mammal species con-
sidered, given the generally well connected graph topologies
(Fig. 2). Sample sizes ranged from 6 to 29, 11-47, and 13-39
per node for fisher, marten and lynx, respectively, with fly-
ing squirrel showing the greatest variability in sample size
with between 6 and 120 samples per node (Additional file 1:
Appendix 3). The number of nodes was similar among 3
Fig. 2 Population graphs representing the genetic relationships among 34
canadensis, b), 29 sites of American marten (Martes americana, c), and 8 sit
Node size is proportional to node centrality and edge length is proportion
species, with 34, 29 and 28 nodes for fisher, marten and
lynx, whereas flying squirrel had only 8 nodes. Average in-
verse edge weight was similar between marten (0.284; range:
0.191-0.356) and lynx (0.259; range: 0.182-0.323), which
were both higher than fisher (0.191; range: 0.100-0.249) and
flying squirrel (0.196; range: 0.137-0.246) (Table 1).
We found differing trends with respect to the relation-

ship between buffer size and mean cost estimated for each
species, which resulted from both the distribution of each
species and the strategy taken for collecting DNA samples.
Specifically, for the more northern distributed species
(lynx and marten), mean cost increased with increasing
buffer size. Alternatively, for the southern distributed spe-
cies (fisher and southern flying squirrel), mean cost gene-
rally decreased as buffer size increased. Specifically, for
southern flying squirrel, there was a consistent decline in
mean cost as the buffer size increased from 6 km to
20 km to 120 km (Table 1). For fisher, however, the mean
cost initially decreased from 6 km to 20 km, but then
returned to the same approximate mean cost at a 120 km
neighbourhood size (Table 1). Mean current density also
sites of fisher (Pekania pennanti, a), 28 sites of Canada lynx (Lynx
es of southern flying squirrels (Glaucomys volans, d) in Ontario, Canada.
al to the genetic distance between populations



Table 1 Average edge weight, average inverse edge weight, mean cost and mean current density of nodes for four terrestrial
mammal species sampled throughout Ontario, Canada

Variable Fisher Canada Lynx American Marten Southern Flying Squirrel

Number of Nodes 34 28 29 8

Average edge weight (range) 5.694 (4.095 – 10.130) 3.972 (3.115 – 5.512) 3.654 (2.814 – 5.276) 5.418 (4.140 – 7.320)

Average inverse edge weight (range) 0.191 (0.100 – 0.249) 0.259 (0.182 – 0.323) 0.284 (0.191 – 0.356) 0.196 (0.137 – 0.246)

6 km buffer mean cost (range) 172.0 (17.3 – 809.9) 83.3 (14.3 – 268.2) 94.1 (13.5 – 283.3) 265.1 (81.4 – 525.4)

20 km buffer mean cost (range) 151.7 (62.8 – 342.1) 97.2 (28.4 – 278.3) 119.8 (24.9 – 282.4) 187.0 (102.1 – 243.7)

120 km buffer mean cost (range) 171.6 (115.3 – 251.2) 130.0 (45.9 – 325.9) 127.4 (62.9 – 211.7) 173.2 (146.8 – 188.5)

6 km buffer mean current (range) 0.100 (−1.080 – 1.579) 0.060 (−1.124 – 0.884) 0.0717 (−0.716 – 1.123) 0.236 (−0.818 – 0.849)

20 km buffer mean current (range) 0.096 (−0.568 – 1.697) 0.057 (−0.663 – 0.684) 0.007 (−0.405 – 0.567) 0.272 (−0.193 – 0.713)

120 km buffer mean current (range) 0.006 (−0.344 – 1.276) −0.010 (−0.326 – 0.249) −0.057 (−0.244 – 0.207) 0.156 (−0.047 – 0.329)

Marrotte et al. Movement Ecology  (2017) 5:21 Page 6 of 11
varied between buffer sizes for each of our species. For
fisher, marten and lynx, mean current density declined
with increasing buffer size. For flying squirrel, on the other
hand, there was an initial decrease in mean current dens-
ity from the 6 km to 20 km buffer, but then the current
density increased again in the 120 km buffer calculation.
The first four PCs in our PCA analysis explained

36.4%, 28.4%, 13.1%, and 7.2% of the variation, respect-
ively (85.1% cumulative variance explained). PC1 had a
negative loading of the mean cost and its standard devi-
ation at all three spatial extents (6 km, 20 km and
120 km) (Table 2). Conversely, PC2 had a positive load-
ing of the mean current and its standard deviation at
each spatial scale. PC3 had a combination of negative
loading of mean cost with its standard deviation at the
broadest extent (120 km) and positive loading of the
standard deviation of cost at the finest extent (6 km).
The PC4 plane was partitioned by a combination of a
positive loading of current at the 20 km extent and a
negative loading of the standard deviation of cost at 6 km.
Table 2 Principal component (PC) loadings for variables derived fro

Variable Descriptiona PC1b

Mean Cost (6 km) −0.360

Mean Cost (20 km) −0.424

Mean Cost (120 km) −0.322

Standard Deviation of Cost (6 km) −0.380

Standard Deviation of Cost (20 km) −0.426

Standard Deviation of Cost (120 km) −0.332

Mean Current (6 km) 0.075

Mean Current (20 km) 0.012

Mean Current (120 km) −0.079

Standard Deviation of Current (6 km) −0.242

Standard Deviation of Current (20 km) −0.250

Standard Deviation of Current (120 km) −0.132
aNumbers in parenthesis indicate the diameter of a buffer over which estimates we
bValues with bold font indicate the major contributors of the principal component
In our regression model of the full study area
(F = 3.07, df = 7, 89, P = 0.006, adjusted R2 = 0.131), the
only predictor of genetic connectivity (estimated as aver-
age inverse edge weight) whose confidence intervals did
not overlap 0 was sample size (Table 3). The northern
model that included both Canada lynx and American
marten had an R2 of 0.404 (F = 6.42, df = 7, 49,
P < 0.0001, adjusted R2 = 0.404), whereas the southern
model, including fisher and southern flying squirrel,
explained less variation (F = 2.84, df = 7, 32, P = 0.02,
adjusted R2 = 0.249). In the northern model, sample size
was once again an important predictor of genetic con-
nectivity, as was PC3, which showed a negative effect of
cost on genetic connectivity. In contrast, PC2 (related to
current density) was an important predictor of genetic
connectivity in the southern model (including fisher and
southern flying squirrel), as was sample size. The direc-
tion of the relationship in the southern model suggested
that current density was negatively related to gene flow
(Tables 2 and 3).
m a cost surface and a current density map

PC2 PC3 PC4

−0.115 0.261 −0.421

−0.105 −0.013 0.306

−0.096 −0.530 −0.136

−0.044 0.311 −0.341

−0.095 −0.017 0.333

−0.096 −0.527 −0.077

0.418 −0.270 0.260

0.474 −0.154 −0.250

0.432 −0.035 −0.364

0.282 0.366 0.104

0.347 0.196 0.442

0.401 −0.076 −0.090

re calculated



Table 3 Slope (SE) estimates for regression models comparing a node-based measure of genetic connectivity to seven predictor variables

Variable Full Model Northern Model Southern Model

Intercept 1.286 × 10−16 (0.093) 1.111 × 10−16 (0.101) 7.891 × 10−17 (0.135)

X 0.208 (0.207) −0.228 (0.198) 0.046 (0.172)

Y 0.307 (0.228) 0.026 (0.176) 0.277 (0.149)

Sample Size 0.321 (0.096) 0.519 (0.105) 0.296 (0.149)

PC1 −0.031 (0.115) 0.218 (0.123) −0.261 (0.181)

PC2 −0.116 (0.095) −0.002 (0.109) −0.332 (0.160)

PC3 0.115 (0.101) 0.354 (0.119) −0.261 (0.178)

PC4 0.025 (0.101) 0.076 (0.121) 0.009 (0.154)

Values with bold font had 95% confidence intervals that did not overlap 0
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Discussion
We found that current density was not a good predictor
of multi-species genetic connectivity across our broad
Ontario study area. In contrast, high current density was
inversely related to gene flow in the southern, highly frag-
mented portion of our study. Across the full study area,
our node-based measures of gene flow were more influ-
enced by sample size than landscape structure. However,
when we conducted separate analyses of northern and
southern Ontario, we found that both cost and current
density were important, depending on location, suggesting
an effect of landscape context. In the northern analysis,
natural cover was abundant and habitat fragmentation
was not pronounced. Genetic connectivity of marten and
lynx was associated with both sample effort and mean cost
measured at various spatial scales. Higher cost was asso-
ciated with reduced gene flow.
In contrast to northern Ontario, the southern portion

of our study area was more heavily affected by develop-
ment, urbanization, and habitat loss. Portions of this
area had natural cover below the 30% threshold sug-
gested by Andrén [53] as being associated with habitat
fragmentation effects. In this region, we found that gen-
etic connectivity was negatively associated with current
density. In other words, within the context of a fragmen-
ted landscape, our current density map was inversely re-
lated to genetic connectivity or gene flow. Our results
seem to provide further support for the hypothesis that
that landscape pattern is important for some species
only when the amount of suitable habitat is low [53–55].
For example, Betts et al. [56] found that the independent
effects of habitat fragmentation were important for ac-
curately modelling songbird occurrence, but only when
habitat suitability in the landscape was low [56]. Our
data suggest that high current density is associated with
reduced gene flow when habitat amount is low.
We were surprised about the direction of the relation-

ship between genetic connectivity and current density.
We expected that high current density would be indica-
tive of multi-species gene flow hot spots; however, we
found that current density was negatively associated with
genetic connectivity. To explore this further, we evalu-
ated the relationship between point samples of current
density and effective resistance estimated over the three
neighbourhood sizes. Effective resistance is the cost of
moving across a circuit between two points, and can be
considered a pairwise measure of isolation [28]. We esti-
mated effective resistance of each neighbourhood by
connecting source and destination points around every
neighbourhood’s perimeter. The relationship between
current density and effective resistance was positive
across all neighbourhood sizes, demonstrating that mean
current density was higher in landscapes with high ef-
fective resistance (Fig. 3). In other words, landscapes
with low habitat amount (and therefore high effective re-
sistance) would be expected to have a high mean current
density. While current density may be proportional to
probability of movement, pinch points with high current
density may only occur in proximity to areas with high re-
sistance (i.e., low habitat amount). This point is under-
scored by the relationship between mean cost and mean
current, which was negatively correlated in all but one of
9 comparisons (Additional file 1: Appendix 2), demon-
strating that wide swaths of habitat have relatively low
movement probability (i.e., by definition they are not
pinch points). While these wide swaths of habitat may
have low movement probability per unit area, they never-
theless appear to contribute to gene flow, likely as sources
of suitable habitat for settlement and reproduction [35].
Perhaps not surprisingly, sample effort was the most

important variable associated with genetic connectivity
in all of our models. More samples at a site were associ-
ated with higher estimates of genetic connectivity
(r = 0.25). We assume that this effect was a consequence
of cGD being sensitive to under sampled sites [57]. This
underscores the importance of sufficient sampling effort
when carrying out studies of genetic connectivity. Insuf-
ficiently sampled sites may yield underestimates of allelic
richness that result in biased estimated of genetic con-
nectivity among sites, especially for frequency-based
measures such as cGD. On the other hand, Koen et al.
[57] showed that investigators should invest more in



Fig. 3 Comparison of current density and effective resistance in circular landscapes with radii of 6, 20, and 120 km. For each node where Canada
lynx, American marten, fisher or southern flying squirrel were sampled we performed a pairwise Circuitscape analysis within the circular confines
of all 3 neighborhood sizes. For each of these sampling nodes and neighborhoods, we placed 5 focal nodes equidistant around each site and
calculated the effective resistance between the next-nearest neighbors. To further reduce the effect of the map boundary on the analysis we
placed these focal nodes 300 m from the circular boundary of the landscape. We then calculated the mean effective resistance (ohms) between
pairs and the mean current density across the circular landscape
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sampling additional sites, rather than sampling sites
more intensively. A sample of at least 25-30 individuals
may be required to accurately estimate allele frequencies
however [58], and some of our nodes had fewer than
this number of samples (Additional file 1: Appendix 3).
Local habitat fragmentation reduces genetic connecti-

vity for multiple species, yet wildlife management efforts
continue to rely heavily on single-species connectivity
estimates to inform movement corridor planning. We
believe such conservation strategies would benefit from
multi-species connectivity estimates, as these estimates
provide a simple and practical means to mitigate the ef-
fects of habitat fragmentation for a larger number of
species. Our point-based connectivity analysis used cir-
cuit theory, with measures taken to avoid the spurious
correlations commonly found when using pairwise mea-
sures of connectivity. Thus, our approach can estimate
local movement probability, and might be used more
reliably in some analyses than pairwise connectivity mea-
sures. Given the novelty of using circuit theory as a point-
based estimator, we encourage further validation of this
approach. With reliable, node-based estimates of land-
scape connectivity and multi-species genetic connectivity,
wildlife managers can validate existing natural heritage
plans as well as develop well-informed strategies that have
the potential to benefit multiple species in a habitat.
There are limitations to modelling animal movement

patterns across large landscapes using land cover resist-
ance grids that led us to model connectivity over smaller
areas to be compiled as tiles. For example, there are con-
straints on the number of pixels that can be processed
by computing resources using Circuitscape, limiting the
ability to run circuit models on rasters with large num-
bers of pixels representing vast landscape areas or even
rasters representing fine scale habitats. Thus, resistance
grids are often segmented into manageable units defined
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by artificial or natural map boundaries that are subse-
quently tiled together to create seamless resistance sur-
faces [44, 59]. Buffers incorporating surrounding land
cover data around each tile are used to minimize border
effects such as seam lines between tiles by creating an
overlapping current density calculation area [11, 60]. Fu-
ture large-scale connectivity analyses may benefit from
coding and computer processing improvements that in-
crease the area that can be mapped during processing
runs, limiting the need for tiles (e.g., [61]).
Modelling multi-species connectivity has the potential

to identify areas that are conducive to ecological flow,
namely movement, dispersal and gene flow and such
areas may be prioritized by natural heritage planners
and conservation initiatives. Practitioners of multi-
species connectivity modelling that aim to validate
resistance surfaces by assessing the degree of gene flow
between populations for a suite of species should be
wary of habitat requirements and the associated move-
ment ecology of each species as some species may insuf-
ficiently reflect landscape connectivity [62]. For example,
carnivores have been thought to be an effective umbrella
species to assess landscape connectivity due to their
large home ranges [63] and capacity for long-distance
dispersal [64]; however, it has been shown that such taxa
are ineffective umbrella representatives for a majority of
species due their specific habitat requirements that do
not reflect the majority of species that are at risk of
habitat degradation [10, 62]. The taxa we used in this
study were selected based on their readily available
population genetic data, and it is possible that these spe-
cies are not reliable connectivity predictors of our pro-
vincial current density map. For example, Cushman and
Landguth [25] showed that American marten was a poor
indicator of landscape connectivity using resistant kernel
modelling [10]. American marten are high elevation for-
est habitat specialists, and typically, species occupying
lower elevations are more at risk of habitat degradation.
This outlines the importance of selecting broadly applic-
able taxa when assessing resistance surfaces.

Conclusion
We were able to demonstrate that multi-species landscape
connectivity can be modelled but that effects may be
dependent on landscape context. When habitat was abun-
dant genetic connectivity was not related to current den-
sity, but instead had a positive relationship with habitat
amount. Current density was more important in the
southern part of our study area where habitat was less
abundant. This finding shows the importance of landscape
context, and appears to support the hypothesis that land-
scape pattern matters when habitat amount is low. Across
all models, sample effort was important, suggesting that
cGD is sensitive to undersampling.
Additional file

Additional file 1: Supplementary material for Marrotte et al., Multi-species
genetic connectivity in a terrestrial habitat network. (PDF 449 kb)
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