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Abstract

Background: Clustering time-series data into discrete groups can improve prediction and provide insight into the
nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group
occupancy, or the rates at which individuals move between groups, can obscure such signals. We use finite mixture
and hidden Markov models (HMMs), two standard clustering techniques, to model long-term hourly movement data
from Florida panthers (Puma concolor coryi). Allowing for temporal heterogeneity in transition probabilities, a
straightforward but little-used extension of the standard HMM framework, resolves some shortcomings of current

models and clarifies the movement patterns of panthers.

Results: Simulations and analyses of panther data showed that model misspecification (omitting important sources
of variation) can lead to overfitting/overestimating the underlying number of movement states. Models incorporating
temporal heterogeneity identify fewer underlying states, and can make out-of-sample predictions that capture
observed diurnal and autocorrelated movement patterns exhibited by Florida panthers.

Conclusion: Incorporating temporal heterogeneity improved goodness of fit and predictive capability as well as
reducing the selected number of movement states closer to a biologically interpretable level, although there is further
room for improvement here. Our results suggest that incorporating additional structure in statistical models of
movement can allow more accurate assessment of appropriate model complexity.

Keywords: Hidden Markov model, Animal movement, Temporal autocorrelation, Temporal heterogeneity,

Florida panther

Background

Given a sequence of animal movements, movement mod-
els aim to find a parsimonious description that can be
used to understand past movements and predict future
movements. Ecologists have long considered the effects
of individual-level covariates (sex, age, nutritional sta-
tus) and environmental covariates (habitat type, loca-
tion of predators or prey) on movement [1-3]. More
recently, modelers have developed hidden Markov models
(HMMs) [4—6] — used in animal ecology under the rubric
of the “multiphasic movement framework” [7] — that
consider the effects of organisms’ internal states; in partic-
ular, HMMs model animal movement as though individ-
ual animals’ movement at particular times is determined
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by which of a discrete set of unobserved movement
states (e.g. “foraging’; “traveling’, “resting”) they currently
occupy. Conditional on the state occupied by an indi-
vidual, HMMs typically assume that animals follow a
correlated random walk model [8, 9].

Ever-increasing capabilities of remote sensors are mak-
ing movement data available over an ever-wider range of
time scales, at both higher resolution (e.g. hourly data
from GPS collars vs. daily or weekly fixes for radio or VHF
collars) and longer extent (e.g. from a few days to months
or years). When analyzing such long-term data, ecologists
will more often have to account for temporal variabil-
ity in movement at diurnal and seasonal scales that were
previously not captured in the data.

HMMs have typically been used to model movements
over short time scales, where the probability of transition-
ing between movement states is approximately constant.
Changes in transition probabilities based on the local
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environment can be accounted for by incorporating envi-
ronmental covariates in the HMM [10], or inferred from
direct comparisons between inferred states and environ-
mental conditions [7]. Schliehe-Diecks et al. [11] con-
sidered temporal trends in behavioural transitions over
the time scales of a six-hour observation period; for the
most part ecologists have turned to other tools to describe
behavioural changes over longer (diurnal, seasonal, or
ontogenetic) time scales [12], although two recent papers
have used HMMs with diurnal variation in transition
probabilities to model shark behaviour [13, 14].

For animals that change their movement behaviour on
a fast time scale, such that the steps between successive
observations are effectively independent, finite mixture
models (FMMs) — which can be considered a special
case of HMMs where the probability of state occupancy
is independent of the previous state — can adequately
describe movement [15]. When movement varies over
long time scales (relative to the time between observa-
tions) with little short-term persistence or correlation,
movement could be well represented by FMMs where
the occupancy probabilities change deterministically over
time. Thus FMMs and HMMs, with or without tempo-
ral variation in the occupancy or transition probabilities,
form a useful family of models for capturing changes in
movement over a range of time scales.

Our primary goal in this paper is to discuss the use
of HMMs with temporally varying transition probabili-
ties — in particular, transition probabilities that follow a
diurnal cycle — for modeling animal movement recorded
over long time scales. In addition to simulation-based
examples, we also re-analyze data from van de Kerk
et al. [16], who used temporally homogeneous hidden
semi-Markov models (HSMMs: an extension of HMMs
that allow flexible modelling of the distribution of dwell
times, the lengths of consecutive occupancy of a move-
ment state) to describe the movement and putative under-
lying movement states of Florida panthers (Puma concolor
coryi).

van de Kerk et al. [16] found that the best-fitting
HSMMs incorporated a surprisingly large number of hid-
den movement states (as many as six for individuals with
a large amount of available data); for reasons of compu-
tational practicality and biological interpretability, they
restricted their detailed analysis to models with only three
underlying states. In contrast, most studies using HMM
have chosen the number of underlying states a priori,
typically using either two [6, 7, 11, 17], or three states
[18, 19]. (We know of two exceptions: Dean et al. [20] eval-
uated models with up to 10 states, but like van de Kerk
et al. they chose to consider only models with three states.
Langrock et al. [21] fitted models with up to 10 states;
their goal, like ours, was to illustrate the potential for over-
fitting with misspecified models.) Behavioural repertoires
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with many distinct states are difficult to interpret — one
reason that other authors have not adopted van de Kerk
et al’s model-based approach to identifying the number of
movement states.

Our second goal, therefore, is to explore whether van
de Kerk et al’s results [16] on the number of movement
states might be driven at least in part by shortcomings of
their statistical model. For large data sets, the complexity
penalties imposed by information-theoretic methods are
often overwhelmed by the sheer amount of information
(apparently) contained in the data, leading to selection of
models with many parameters. HMMs typically use sim-
ple models for the behaviour within each movement state,
e.g. two parameters each to describe the step-length and
turning angle distributions. When the movement patterns
in each state are more complex than the model allows for
(e.g. animals behave differently as a function of spatial or
temporal heterogeneity in the environment, or follow an
unusual step-length distribution [21]), the model is forced
to accommodate this complexity by subdividing animal
movements into a large number of discrete movement
states. We predict that increasing volumes of data will
increasingly lead researchers who are accustomed to fit-
ting small models to sparse data into such traps. We exam-
ine whether allowing for diurnal variation in the Florida
panther data allows us to select models with fewer latent
states; we also fit models to simulated data with varying
numbers of latent states, and with and without tempo-
ral heterogeneity, to test our conjecture that heterogeneity
can be misidentified as movement complexity. Finally, we
discuss some of the conceptual and statistical difficulties
underlying the general problem of estimating the number
of discrete movement states underlying observed animal
movement behaviour.

Methods

Data and previous analyses

GPS collars were fitted to 18 Florida panthers in 2005-
2012 by Florida Fish and Wildlife and Conservation Com-
mission staff using trained hounds and houndsmen. Of
these animals, 13 had sufficient data to be used by van de
Kerk et al. [16]. Here we focus on the four cats with the
most data (all with approximately 10,000-15,000 observa-
tions: see Table 1), in part because our goal is to under-
stand the issues that arise when simple models are fitted
to large data sets, and in part because the general trend in
telemetry studies is toward larger data sets. As is typical in
studies of animal movement, we took first differences of
the data by decomposing contiguous sequences of hourly
GPS coordinates into successive step lengths (in meters)
and turning angles (in radians) [9, 16]. As van de Kerk et al.
did, we fitted a separate model to each individual cat tra-
jectory; while mixed models would have more statistical
power and would describe among-individual variation in a
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Table 1 Cat ID and number of observations; ID numbers are
given matching those shown by van de Kerk et al. [16] and those
in the data located at the UF Institutional repository (IR@UF)

(van de Kerk 2015) (IR@UF) Number of observations
130 1 10286

131 2 9458

48 14 14645

94 15 10250

natural way [11], they do not improve estimates of individ-
ual movement parameters significantly in the case where
a large amount of data is available for each individual [22].

van de Kerk et al. [16] used hidden semi-Markov mod-
els (HSMM), an extension of HMM that permits explicit
modelling of dwell times [6], considering both Poisson and
negative binomial distributions for dwell times. As shown
by van de Kerk et al. [16], the estimated shape parameter
of the negative binomial dwell time distribution was typ-
ically close to 1 (= 0.4 — 1.6; confidence intervals were
not given), implying that a geometric distribution (i.e.,
negative binomial with shape=1) might be adequate. For
computational simplicity, therefore (the computational
tools we use below do not easily allow for HSMMs) we
reverted to the simpler HMM framework which assumes
fixed switching rates, and hence geometrically distributed
dwell times.

van de Kerk et al. [16] considered time-homogeneous
models with a variety of candidate distributions — log-
Normal, Gamma, and Weibull distributions for step
lengths and von Mises and wrapped Cauchy distribu-
tions for the turning angle — concluding on the basis
of the Akaike information criterion (AIC) that Weibull
step length and wrapped Cauchy turning angle distribu-
tions were best. Since our analysis aims for simplicity and
qualitative conclusions rather than for picking the very
best predictive model, we focus on models that treat each
step as a univariate, log-Normally distributed observation,
glossing over both the differences in shape between the
three candidate step-length distributions and the effects
of considering multivariate (i.e., step length plus turning
angle) observations. To check that this simplification does
not distort our conclusions we do briefly compare log-
Normal and Weibull step-length distributions, with and
without a von Mises-distributed turning angle included in
the model (Fig. 2); we also repeated the analysis with turn-
ing angles included for most models (Additional file 1).

van de Kerk et al. [16] used the Bayesian (Schwarz)
information criterion (BIC) to test the relative penalized
goodness of fit for models ranging from 2 to 6 latent
states. In general, BIC values decreased as the number of
states increased from three to six states, suggesting that
the six-state model was favoured statistically; however, the
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authors used three-state models in most of their analy-
ses for ease of biological interpretation. We follow van de
Kerk et al. [16] in using BIC-optimality (i.e., minimum BIC
across a family of models) as the criterion for identifying
the best model, because we are interested in explaining the
data generation process by identifying the “true” number
of underlying movement states.

Using BIC also simplifies evaluation of model selection
procedures; it is easier to test whether our model selec-
tion procedure has selected the model used to simulate
the data, rather than testing whether it has selected the
model with the minimal Kullback-Leibler distance [23].
We recognize that ecologists will often be interested in
maximizing predictive accuracy rather than selecting a
true model, and that as usual in ecological systems the
true model will be far more complicated than any candi-
date model [24]. We have repeated some of our analyses
using AIC rather than BIC (not shown); for our examples,
the qualitative conclusions stated here for BIC-optimality
carry over to analyses using AIC.

Model description

In a HMM, the joint likelihood of emissions (i.e., direct
observations) Y =y, ..., yr and a hidden state sequence
Z,z €{l,...,n},t =1,...,T, given model parameters 6
and covariates X;.7 = X1, ..., XT, can be written as:

P (Y1.1,Z1.710,X1.7) = P(21 | X1)P (Y1l21,X1)
T
X 1_[ P (zic|zk—1,Xk) P (yi|zie X¢)
k=2

1)

The emissions y; are boldfaced to denote that we may
have a vector of observations at each time point (e.g.,
step length and turning angle). The model contains three
distinct components:

Initial probability P(z; = i|x1)P(y1|z1,X1): the probabil-
ity of state i at time ¢ = 1 given that the covariates are
X1, times the vector of observations y; conditioned
on state z; and covariates Xx;.

Transition probability P(zy = j|zx—1 = i,X¢): the prob-
ability of a transition from state i at time t = k — 1 to
state j at time ¢ = k, given covariates Xy .

Emission probability P(y|zi, xx): a vector of observa-
tions y; given state z; at time ¢ = k and covariates
X

Equation 1 gives the likelihood of the observed sequence
given (conditional on) a particular hidden sequence. In
order to calculate the overall, unconditional (or marginal)
likelihood of the observed sequence, we need to aver-
age over all possible hidden sequences. There are several
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efficient algorithms for computing the marginal likeli-
hood and numerically estimating parameters [25]; we
used those implemented in the depmixS4 package for R
[26, 27].

For an n-state HMM, we need to define an # x # matrix
that specifies the probabilities 7;; of being in movement
states j at time ¢ 4 1 given that the individual is in state i
at time £. The FMM is a special case of HMM where the
probabilities of entering a given state are identical across
all states — i.e., the probability of occupying a state at
the next time step is independent of the current state
occupancy. It can be modelled in the HMM framework
by setting the transition probabilities 7;; = m;, for j =
1,...,n.

In any case, the transition matrix 7;; must respect the
constraints that (1) all probabilities are between 0 and 1
and (2) transition probabilities out of a given state sum
to 1. As is standard for HMMs with covariates [26], we
define this multinomial logistic model in terms of a linear
predictor 7, where 7 is set to 1 (i.e. we have only n x
(n — 1) distinct parameters; we index j from 2 to # for
notational clarity):

n
mj = exp((®)/ [ 1+ ) exp(ni(®) | forj=2,...,n
j=2

n
min=1- ij
J=2

()

We considered four different transition models for diur-
nal variation in movement, incorporating hour-of-day as
a covariate following the general approach of Morales
et al. [18] of incorporating covariate dependence in the
transition matrix.

Multiple block transition Here we assume piecewise-
constant transition probabilities. The transition
probability 7; is a function of time (hour of day),
where it is assigned to one of M different time blocks:

M
nij(t) = Z aijmam:t (3)
m=1
where a;,, are parameters, and 6,,—; is a Kronecker
delta (8,,=; = 1 for the time block corresponding to
time ¢, and O otherwise).
Quadratic transition model We assume the elements of
the linear predictor are quadratic functions of hour:

2
t t
i(t) = bji1 + bijpp | — bis| — ) . 4
771/() ij1 + Dij2 (24>+ ij3 (24) (4)
The quadratic model is not diurnally continuous, i.e.
there is no constraint that forces 7;(0) = 7;/(24);
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imposing a diurnal continuity constraint would col-
lapse the model to a constant.

Sinusoidal transition model A sinusoidal model with a
period of 24 hours is identical in complexity to the
quadratic model, but automatically satisfies the diur-
nal continuity constraint:

2wt . ([ 2mt
ni(t) = bijl + biﬂ cos <24> + bl‘,‘g sin (24) .
(5)

Similar models have been used in recent HMM stud-
ies of shark behaviour [13, 14].

Hourly model Lastly, we extended the multi-block
approach and assigned a different transition matrix
for every hour of the day (i.e. this is a special case of
the multi-block model with M = 24) . This model
is included for comparative purposes; due to the
large number of parameters in the model (more than
24n(n — 1) for a HMM with # states), it is not really
practical. We only fitted up to four states using the
hourly model.

Other periodic functions, such as Fourier series (i.e.,
the sinusoidal transition model augmented by additional
sinusoidal components at higher frequencies) or periodic
splines, could also be considered.

Model complexity and the number of parameters
increase as the number of latent states increase. For a fixed
number of states homogeneous FMMs are simplest, fol-
lowed by homogeneous HMMs and finally by FMMs and
HMMs incorporating temporal heterogeneity. In general,
the number of free parameters in an HMM is the sum
of the number of free parameters for each of the three
model components (initial states, transition probabilities,
and emissions). Let # be the number of hidden states
and k;, k¢, k. be the number of parameters describing the
covariate-dependence of the prior distribution, transition
function and emission distributions; that is, for a homo-
geneous model, kK = 1, while a single numeric covariate or
a categorical predictor with two levels would give k = 2.
Then the number of free parameters of an HMM is: [Ini-
tial states) k;- (n—1) + [Transition probabilities) ky-n-(n—
1) + [Emission parameters) k. - n. As the number of states
increases, the number of free parameters in (homoge-
neous or heterogeneous) FMMs and time-homogeneous
HMMs increases linearly, whereas for HMMs with tem-
poral heterogeneity (or covariate-dependent transitions
more generally) the number increases quadratically.

For most of our analyses, we followed van de Kerk et al.
in assuming that GPS error was negligible, i.e. that step
lengths and turning angles could be measured without
error. However, we did one set of simulations to check the
effect of GPS error on our conclusions. In this case, we
reconstructed the spatial coordinates simulated from the
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models above: if the step length and turning angles chosen
from one of the models above are denoted as {s;, o;} then

Xt+1 = Xt + St COS O ©)

Yi+1 = Yi + 8¢ sinoy.

We then added radially symmetric GPS noise (x¢0bs =
x¢ + N(0,5), ¥tobs = ¥: + N(0,5)) and reconstructed
the observed step-length sequences from the sequence of
noisy positions (See Additional file 2 for more details).

Incorporating both hidden behavioural states (with tem-
porally heterogeneous transitions) and GPS error in the
same statistical model would require combining the stan-
dard discrete HMM framework with an additional hier-
archical layer describing the true the {x, y} coordinates as
a continuous, bivariate latent variable. While this would
probably be possible using a Bayesian MCMC method, it
would be challenging and seems to be rarely attempted
[28, 29]. We instead treat this case as a robustness
analysis, fitting the noisy simulation with a model that
ignores the noise to assess the effects of noise on our
conclusions [30].

Model evaluation

We used the depmixS4 package [26] to fit covariate-
dependent transition HMMs, simulate states and step
lengths using the estimated parameters, and estimate the
most likely sequence of movement states with the Viterbi
algorithm.

We ran a simulation experiment in which we fitted
HMMs with both homogeneous and heterogeneous tran-
sition probabilities to simulated data with both cases to
see whether the correct (heterogeneous-transition) model
correctly identified the number of states while the mis-
specified (homogeneous-transition) model overestimated
the number of states. We also included two additional
experiments with additional errors. We used 100 realiza-
tions of the four cases, fitting each realization with HMMs
ranging from 2 to 4 movement states, with and without
temporal heterogeneity in the transition probabilities.

We used three approaches to assess the fit of both time-
homogeneous and time-inhomogeneous HMMs with 3 to
6 states to step-length data from the four of the thirteen
Florida panthers with the most data (> 9000 observa-
tions). (1) BIC was used to compare the goodness of fit
of each model type. The model with the lowest BIC was
selected to be the optimal-BIC model and all BICs were
adjusted to ABIC based on the optimal-BIC model (ABIC
= BIC - min(BIC)). (2) Comparing average step-length
by hour of day for the observed data and for data simu-
lated from the models shows how well a particular class
of models can capture diurnal variation in movement. (3)
Comparing temporal autocorrelations for the observed
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data and for data simulated from the models shows how
well a particular class of models can capture serial cor-
relation at both short and long time scales. For multiple
block transition HMMs, we selected three blocks (M = 3)
based on the similarities of average movement by time
of day within each block (m; = 21 — 23,0 — 6,my =
7 — 16,m3 = 17 — 20). As a complement, we also fit-
ted FMM and FMM with priors on state occupancy that
varied sinusoidally over time to compare the temporal
effects in goodness of fit. As a reminder, FMMs assume
that the latent state in each time step is independent of the
latent state at the previous time step; time-varying FMMs
can accurately describe movement change on a short time
scale, but the average propensity for different movement
changes over time.

While the expected step length and ACF can be com-
puted directly from estimated parameters for FMMs and
(with some difficulty) homogeneous HMMs, the inter-
action between the geometric dwell time within each
state and the temporally varying interaction probabilities
makes this calculation infeasible for more complex mod-
els. Therefore, we used simulations to predict expected
hourly step lengths and autocorrelation functions (ACF).
Specifically, we first simulated the movement states for-
ward by choosing a multinomial sample for each time step,
using the estimated model parameters and conditioning
on the previous movement state and (for heterogeneous
models) on the time of day. We then sampled step lengths
independently for each step, conditioning on the simu-
lated movement state. Finally, we computed average step
lengths and ACFs from the realizations, which were run
for the same number of steps as the corresponding data
set (long enough to make the starting conditions neg-
ligible). We compared our simulated predictions with
the observed movements. For comparison, we also sim-
ulated step lengths based on the Viterbi estimates of the
states occupied by time of day in the observed data. This
approach of generating predictions from the expected or
simulated step lengths/turning angles conditional on the
most likely state sequence predicted by the Viterbi algo-
rithms, or using predictions based on pseudo-residuals
[6, 25], is problematic in some applications because the
predictions condition on the observed data. While it
is useful for predicting missing data in the observation
sequence, it may not be reliable for evaluating the good-
ness of fit for HMM models with different degrees of
structural complexity.

Results

The simulation experiment supports our hypothesis that
homogeneous transition HMMs can overestimate the
number of hidden states when the model is misspecified
(Fig. 1 bottom left panel) without GPS error. Heteroge-
neous transition models can always predict the correct
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Fig. 1 Frequency of BIC-optimal numbers of states estimated, from 100 realizations of step lengths from an HMM with two latent states. In general
misspecification increases the frequency of overfitting (i.e. selecting more states than the true value of n = 2), whether temporal heterogeneity is
neglected (red lines, bottom row) or observation error is not accounted for (right column). Fitting models may incorporate temporal heterogeneity in
transition probabilities (blue lines) or exclude it (red lines). Subplots show variation in (left/right) whether error is added to the observed step lengths
and (top/bottom) whether the simulation model incorporates temporal heterogeneity

number of states (in 100/100 simulations, BIC correctly
identifies #n = 2 as the number of states), whereas the tem-
porally homogeneous models overestimate the number of
states (the correct value, n = 2, is chosen most often, but
in fewer than half of the simulations; values up ton = 5
are frequently chosen).

GPS noise has similar effects to temporal heterogene-
ity. When GPS noise is added to temporally homogeneous
simulations with # = 2, both model classes (with and
without temporal heterogeneity in transition probabili-
ties) choose n = 3 about 75% of the time. In simulations
with temporal heterogeneity, temporally heterogeneous
models choose # = 3 in nearly all cases, while homoge-
neous models choose n = 3 and n = 4 equallty.

In the real data application, the BIC-optimal number
of states for time-homogeneous models is consistent with
van de Kerk et al’s [16] results. For time-homogeneous
models, the Weibull-wrapped-Cauchy [16], Weibull-von
Mises, and log Normal without turning angles all identify
the same BIC-optimal number of states. While the num-
ber of states identified by homogeneous-HMM models
varies according to the step-length/turning-angle distri-
butions chosen, ranging from n = 5 for Weibull steps
alone to n = 7 for the log Normal-von Mises emissions
model, the number of states identified by heterogeneous-
HMM models is consistent among step-length/turning-
angle models (» = 5: Fig. 2). In general the models with
turning angles select slightly higher BIC-optimal num-
bers of states because they have more data to work with
(two observations per time step rather than one), hence
the relative importance of the goodness-of-fit (likelihood)

increases relative to the complexity penalty. Cats 2, 14,
and 15 show similar patterns, although there is more
variation, especially among step-length models; in gen-
eral the heterogeneous models are more consistent than
the homogeneous models (see Additional file 3). (Across
the board, all four cats analyzed showed similar results,
so we present results for Cat 1 only throughout. Analo-
gous results for the other three cats are available in the
Additional file 3.)

Models with temporal heterogeneity provide better fits
to the data (lower BIC) than homogeneous models in both
FMM and HMM frameworks, but time-homogeneous
HMMs are better than FMMs with sinusoidal temporal
heterogeneity (Fig. 3). Turning to the temporally hetero-
geneous HMMs (Fig. 3, right panel), we see that the model
with different transition probabilities for each hour of the
day (HMM + THhourly) is overparameterized; it under-
performs homogeneous HMM with even 3 states, and
gets much worse with 4 states. The multiple-block model
gives approximately the same BIC as the homogeneous
HMM, although it gives the BIC-optimal number of states
as 4, in contrast to 6 for the homogeneous HMM. Finally,
the quadratic and sinusoidal models are the best models
tested by far; they both give the BIC-optimal number of
states as 5, and they have similar goodness of fit. How-
ever, the similarity between the quadratic and sinusoidal
models may be overstated in Fig. 3 due to the very large
variation in BIC (over thousands of units) across the full
range of models; the best-fit sinusoidal (n = 5) model is
approximately 80 BIC units better than the best quadratic
model (also » = 5), which would normally be interpreted
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Fig. 2 Comparison of BIC-optimal state predictions for panther data for homogeneous transition HMMs (left panel) and heterogeneous transition
HMMs (right panel), with movement step distribution models of varying complexity. For the time-heterogeneous model, all model variants estimate
the same BIC-optimal number of behavioural modes (5); the homogeneous model is more variable, with the number of modes ranging from 5 to 7
or higher. Solid line: univariate response HMMs (turning angles ignored); dotted line: multivariate response HMMs (turning angles included, assuming
a von Mises distribution). Red lines: log-normal step-length distribution; blue lines: Weibull step-length distribution

as an enormous improvement in goodness of fit (both
models have 90 parameters).

These conclusions persist across the other cats, and
when turning angles are included in the model (Additional
file 1). Temporally heterogeneous models select fewer
BIC-optimal states (4 or 5) than homogeneous models (6
or > 7). The best overall model is usually the sinusoidal
heterogeneous model. The only exception is for the cats
with the least data, where the greater complexity of the

heterogeneous models has a stronger effect; the homo-
geneous model wins overall for cat #15 (step-length-only
models) and for cats #14 and #15 (models with step length
and turning angle).

The average hourly step lengths from the observed
panther data exhibit a clear diurnal pattern (Fig. 4).
As expected, temporally homogeneous models (whether
EMM or HMM) predict the same mean step length
regardless of time of day, failing to capture the diurnal
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Fig. 3 Adjusted BIC for all numbers of states. With the exception of the hourly model, all temporally heterogeneous HMMs give better/more
parsimonious fits to the data, as well as selecting BIC-optimal models with fewer states. Left panel: homogeneous FMM, heterogeneous FMM
(sinusoidal prior), and homogeneous HMM. Right panel: HMMs with different temporal transition models. Dashed lines: FMMs; solid lines: HMMs
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Fig. 4 Average step-length by time of day from out-of-sample predictions for BIC-optimal models in each category. All of the temporally
heterogeneous models with the exception of the block model fit the observed pattern adequately, as does the prediction based on Viterbi residuals
(which conditions on the observed step lengths, so is not truly out-of-sample); the temporally homogeneous models fail for all four cats. Dashed
lines: FEMMs; solid lines: HMMs; v points: within-sample Viterbi predictions of a three-state homogeneous HMM. Black line and grey ribbon show

20

activity cycle. All of the models incorporating tempo-
ral heterogeneity, including the temporally heterogeneous
FMM, can capture the observed patterns. However, the
block model does markedly worse than the other tempo-
ral models (changing the block definitions might help by
re-clustering/grouping different hours or increasing the
number of blocks), and the (overparameterized) hourly
model does better than any other model at capturing the

early-evening peak (but worse at capturing the mid-day
trough). We also included average hourly step lengths
from three-state temporally homogeneous HMM Viterbi
prediction to illustrate within sample predictions can cap-
ture the diurnal patterns, but fail to capture out of sample
predictions.

Like the diurnal pattern (Fig. 4), the strong autocorrela-
tion of the observed step lengths at a 24-hour lag (Fig. 5)
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Fig. 5 Out-of-sample predicted autocorrelations for BIC-optimal models in each category. All of the HMMs, whether temporally homogeneous or
heterogenous, fit the short-term (lag < 10 hour) pattern adequately: all of the temporally heterogeneous models, whether FMM or HMM, fit the
long-term (lag > 10 hour) pattern adequately. Dashed lines: FMMs; solid lines: HMMs; v points: within-sample Viterbi predictions of a three-state
homogeneous HMM. Black line shows observed average step length by hour
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shows the need to incorporate temporal heterogeneity in
the model — we could have reached this conclusion even
without developing any of the temporal-heterogeneity
machinery. In contrast to the hourly averages, the auto-
correlation (ACF) captures both short- and long-term
temporal effects. HMM without temporal heterogene-
ity captures the short-term autocorrelation, but misses
the long-term autocorrelation beyond a 7-hour lag. Tem-
porally homogeneous FMMs, by definition, produce no
autocorrelation (neither short- nor long-term autocorre-
lation). FMMs without temporal heterogeneity, although
they capture the diurnal pattern well, underpredict the
degree of short-term autocorrelation.

Perhaps the hardest part of analysis is drawing reason-
able biological conclusions about the movement states
identified by the model. Where we previously confined
our attention to the single cat with the most data, we now
compare the estimated emission parameter values (mean
and standard deviation of the step length in each state)
between the homogeneous and heterogenous models for
all four cats in our sample (Fig. 6). Our goal is to under-
stand why the homogeneous models have identified more
states than the heterogeneous models: how are the hetero-
geneous models able to group behaviours that the homo-
geneous models have separated into different modes? In
general, the states with longer mean step lengths are simi-
lar between homogeneous and heterogeneous models. For
cats 14 and 15, the states with the longest or next-longest
mean step lengths have similar means and standard devi-
ations; for cats 1 and 2, three long-step states in the
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homogeneous HMM appear to divide two long-step states
in the heterogeneous HMM. For short-step states, the
heterogeneous HMM tends to identify a high-variance
state, while the homogeneous HMM picks up states with
very short step lengths. That is, the homogeneous HMM
analysis has concluded (at least for cats 2, 14, and 15)
that a cluster of short-distance moves can be subdivided
into three separate states, while the heterogeneous HMM
analysis identifies only two sub-states. We believe this
occurs because of additional residual autocorrelation in
the homogeneous HMM, which would lead to an infla-
tion of the difference in the model log-likelihoods and thus
lead the models to pick more complex models. Finally,
we suspect that some additional overspecification of the
short-range movemement behaviour may be due to GPS
error [30], which is not specifically accounted for in our
model.

Discussion

HMMs are a widely used and flexible tool for modeling
animal movement; we need to work harder to make sure
they are both appropriately complex and biologically
interpretable. With the increasing volumes of movement
data available, ecologists who naively use traditional
homogeneous HMMs and standard information-
theoretic criteria to estimate the number of movement
states will generally overfit their data, i.e. they will “dis-
cover” large number of states that are difficult to interpret
biologically. Our results agree with those of Langrock
et al. [21], who consider the effects of misspecification in

catlD: 1

catlD: 2

Model

catlD: 14

catlD: 15

—-o- homogeneous

sd of step length (m)

—— heterogeneous (sin)

1000 10

10 100
mean step length (m)

of short-step-length movement states

100 1000

Fig. 6 Comparison of step length distribution parameters for BIC-optimal HMMs (homogeneous and sinusoidal) for four panthers. Homogeneous
and heterogeneous models agree qualitatively on long-step-length state parameters; homogeneous models subdivide short-step-length states into
an additional category. Mean (x-axis) and standard deviation (y-axis) of step length by state (log-Normal parameters, units of log;, m) for
BIC-optimal homogeneous HMMs (red line) and heterogeneous HMMs with sinusoidal transition (blue line). Dashed circles highlight comparable sets
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the step-length distribution, i.e. of inappropriately assum-
ing the step lengths in each state follow some particular
parametric distribution.

As usual, the appropriate approach depends on the
goal of the analysis. If ecologists simply want to identify
states and associate them with environmental characteris-
tics, it might be sufficient to use a simple (homogeneous)
H(S)MM model, pre-specifying the number of states to
a biologically sensible value, and then match post hoc
Viterbi estimates of state occupancy with environmental
variation in space and time [7]. For example, the conclu-
sion that panthers are more likely to move long distances
at night (as well as being long known to panther biol-
ogists) was reached by van de Kerk et al. by averaging
Viterbi estimates of state occupancy by time of day ([16],
Fig. 4). On the other hand, if the goal of analysis is to
make out-of-sample predictions about animal movement,
such as in a management context, it is necessary to fit
a covariate-dependent model that explicitly incorporates
the switching process. While the Viterbi algorithm can be
applied to work backward from observed movement to
variations in state occupancy with environmental condi-
tions even when using a homogeneous model, a homoge-
neous model can never predict movement that varies with
environmental conditions.

If our goal is actually to estimate how many different
kinds of movement are within a given species’ behavioural
repertoire — keeping in mind that these discrete move-
ment states are certainly an oversimplified represen-
tation of animals’ real internal states — then, as we
have shown above, relatively complex models will gen-
erally be required to avoid overestimating the number
of states. More generally, we question whether estimat-
ing the number of discrete modes, rather than deciding
on the number of states a priori, is a sensible proce-
dure. With enough data, animal behaviour is probably
subdivisible into arbitrarily many discrete modes. This
recalls Burnham and Anderson’s “tapering effects” con-
cept [31]: the “true” model for most ecological systems is
effectively infinite-dimensional. While adding covariates
can help explain some behavioural variation and reduce
the number of estimated modes, it does not address
the underlying tapering-effects problem. Information-
theoretic analysis of the number of modes could be use-
ful for purely predictive models, or possibly — if the
analysis gave strong support for more discrete, biologi-
cally interpretable behavioural categories than were previ-
ously identified from direct natural-history observations
— to identify cryptic behavioural modes. In attempting to
assign biological meaning to movement modes identified
by models, we have graphically explored the parameter
values (e.g. Fig. 6) as well as the spatial and temporal distri-
butions of Viterbi-estimated state occupancy; our failure
to see any clear patterns in these analyses contributed to
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our previous decisions to revert to the a priori guess of
three movement states. In any case, researchers should
not take optimal numbers of modes identified by such
analysis at face value, especially for large data sets.

On a more technical note, researchers in cluster analy-
sis (of which HMMs are a special case) have shown that
the technical conditions required for BIC to apply may be
violated [32] — because a model can contain a movement
state that is never used, leading to transition probabilities
of zero that correspond to parameters on the boundary
of the allowable parameter space. However, BIC can be
useful as an approximate upper limit on the number of
states. Various solutions to this problem have been pro-
posed, including the “integrated classification likelihood”
(ICL) [32, 33], as well as a simpler “knee point” method
[34] that looks for the cluster size that corresponds to the
largest change in BIC rather than to the smallest overall
BIC. (Dean et al. [20] took a similar approach, but based
on the log-likelihood curve rather than the BIC.) Never-
theless, in our simulations the BIC does correctly identify
the number of states when appropriate heterogeneity is
included in the model.

Animal movement models are becoming more complex,
and the list of processes that can be incorporated in these
models is almost unlimited. We focused on the effects of
temporal heterogeneity because it was an obvious driver
of behaviour that had been omitted from previous anal-
yses. We neglected several other covariates that could
clearly affect panther movement (e.g. local habitat type
and distance from roads; distance from home range cen-
ter; presence of nearby conspecifics; previous occupancy
history). We partly or completely neglected other phe-
nomena such as the information provided by turning
angles; GPS error [35]; and non-geometric dwell times
(HSMMs). Omission of any of these processes means that
our models are misspecified — animals can behave in ways
that are not captured by the model — and thus subject to
overestimating the number of latent states.

Our models incorporating temporal heterogeneity iden-
tify more BIC-optimal states than we can easily assign bio-
logical meanings to, presumably due to additional sources
of complexity that we did not include in our model. With
sufficient data, computational resources, and program-
ming resources, we could in principle have included many
more processes in our model. However, data require-
ments, computation time and numerical instability of
complex models, and the complexity of model selection
and interpretation all make this approach impractical
in reality [36]. Biologists should instead aim to priori-
tize the processes they incorporate in movement models
based on their natural history knowledge, using graphi-
cal and quantitative diagnostics to test for robustness of
the fit. Better diagnostic procedures and tests are needed:
although it is important to assess overall goodness-of-fit
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[37], it is even more important to localize fitting prob-
lems to particular aspects of the data so that models can
be constructed without needing to include all possible fea-
tures of interest. Pseudo-residuals can be useful for this
purpose [6], but researchers should note that they condi-
tion on the observed step lengths and turning angles and
hence can be optimistic in some cases; posterior predic-
tive simulations, which compare distributions of summary
statistics from model simulations to observed values, may
be a useful alternative [38].

Conclusion

We have presented a simple but little-used exten-
sion (time-dependent transitions) to HMMs that partly
resolves problems of overfitting the number of discrete
movement states that underly the movements of Florida
panthers. Time-dependent transitions offer a simple way
to (1) reduce the selected number of states closer to a bio-
logically interpretable level; (2) capture observed diurnal
and autocorrelation patterns in a model that can make
out-of-sample predictions; (3) improve overall model fit
(i.e., lower BIC) and reduce the level of complexity (num-
ber of parameters) of the most parsimonious models.
More generally, we have added an option to the expand-
ing menu of modeling options available to movement
ecologists within the hidden Markov model framework.
By choosing thoughtfully from this menu, ecologists will
better be able to quantify the behaviour of their focal
species.
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