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Abstract

Background: Detailed information about animal location and movement is often crucial in studies of natural
behaviour and how animals respond to anthropogenic activities. Dead-reckoning can be used to infer such detailed
information, but without additional positional data this method results in uncertainty that grows with time.
Combining dead-reckoning with new Fastloc-GPS technology should provide good opportunities for reconstructing
georeferenced fine-scale tracks, and should be particularly useful for marine animals that spend most of their time
under water.
We developed a computationally efficient, Bayesian state-space modelling technique to estimate humpback whale
locations through time, integrating dead-reckoning using on-animal sensors with measurements of whale locations
using on-animal Fastloc-GPS and visual observations. Positional observation models were based upon error
measurements made during calibrations.

Results: High-resolution 3-dimensional movement tracks were produced for 13 whales using a simple process
model in which errors caused by water current movements, non-location sensor errors, and other dead-reckoning
errors were accumulated into a combined error term. Positional uncertainty quantified by the track reconstruction
model was much greater for tracks with visual positions and few or no GPS positions, indicating a strong benefit to
using Fastloc-GPS for track reconstruction. Compared to tracks derived only from position fixes, the inclusion of
dead-reckoning data greatly improved the level of detail in the reconstructed tracks of humpback whales. Using
cross-validation, a clear improvement in the predictability of out-of-set Fastloc-GPS data was observed compared to
more conventional track reconstruction methods. Fastloc-GPS observation errors during calibrations were found to
vary by number of GPS satellites received and by orthogonal dimension analysed; visual observation errors varied
most by distance to the whale.

Conclusions: By systematically accounting for the observation errors in the position fixes, our model provides a
quantitative estimate of location uncertainty that can be appropriately incorporated into analyses of animal
movement. This generic method has potential application for a wide range of marine animal species and data
recording systems.
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Background
Predicting a ship’s position by projecting travel direction
and speed from the previous position, a technique
known as ‘dead-reckoning’, has been used for centuries
[1] and is the basis for modern inertial navigation sys-
tems in vehicles [2]. Since its introduction in animal
bio-logging over 25 years ago [3, 4], dead-reckoning has
become an established method for reconstructing fine-
scale movement tracks, in particular for air-breathing
marine animals that spend most of their time under
water, out of sight of global positioning system (GPS)
signals [5, 6].
Dead-reckoning has led to novel insights into the nat-

ural foraging and orientation behaviour of marine ani-
mals including pinnipeds (e.g. [7–10]), turtles [11],
diving birds [12, 13], and cetaceans (e.g. [14–22]), and
has provided important information about the behav-
ioural responses of cetaceans to noise [23–28]. Although
animals can also be localised under water using active
and passive sonar (e.g. [29–33]), such techniques require
transmission and/or reception of sound which is difficult
to accomplish at a high resolution, and may impact the
environment of acoustically-sensitive marine mammals.
Dead-reckoning for marine animals was enabled by

the development of miniature animal-attached data log-
gers that record movement parameters such as compass
heading, speed, and body orientation [34–38]. Because
each dead-reckoned position depends upon the previous
one, the spatial error in the track generally grows with
time due to an accumulation of sensor errors, move-
ments of water currents, and violations of the assump-
tions that the animal only moves through the water in
the caudo-rostral direction and that buoyancy and lift
forces are negligible [6]. A common source of uncer-
tainty in dead-reckoning tracks (sometimes called
‘pseudo tracks’) is the speed of the animal. Speed may be
estimated if direct measurements are missing [24], but
can also be measured with a speed sensor [13] or ap-
proximated based on pitch and change in depth [39],
acoustic flow noise [40], or overall dynamic body accel-
eration [41].
Fixes of known positions on the earth’s surface can be

used to adaptively calibrate dead-reckoning sensors or to
directly correct dead-reckoned positions [2]. Position
fixes of marine animals are obtained, for example, by vis-
ual observation (which can be aided by the use of laser
range finders and animal-attached very high frequency
(VHF) transmitters) [42, 43], acoustic localisation [44, 45],
light intensity-based geolocation [46], or GPS satellite tel-
emetry. Since conventional GPS is generally not feasible
for marine animals because of a long (~10-30 s) time-to-
fix and high current consumption [47], new snapshot GPS
technologies such as Fastloc-GPS [48–50] have quickly
become popular because of their ability to acquire data

sufficient to estimate location during short surface in-
tervals [51]. Such approaches store GPS pseudorange
data, which can be converted into positions after the
logger is retrieved or after transmission through Argos
[52] or mobile phone networks [53]. The average spatial
accuracy for positions observed with Fastloc-GPS
(<100 m) is much greater than for positions from Argos
(0.5-10 km) or light-based geolocation (1-4°) [54–56];
therefore, the integration of Fastloc-GPS and dead-
reckoning data has the potential to result in highly pre-
cise georeferenced movement tracks [57].
Most studies to date have assumed a constant bias in

velocity between position fixes, essentially stretching the
track to match the fixes [5] or have iteratively approxi-
mated a constant bias [24]. We describe here a new
method for referencing dead-reckoning tracks to pos-
ition fixes based upon state-space models (SSMs). SSMs
are an appropriate statistical tool for this application be-
cause they explicitly separate the observation processes
from the underlying movement process [58] and are a
standard technique in integrated navigation systems for
avian, automotive and naval applications [2]. In animal
ecology, SSMs for track reconstruction and smoothing
have been implemented as Kalman filters (e.g. [59–63]),
particle filters [64], and using Markov chain Monte
Marlo (MCMC) (e.g. [65–68]). Movement data of rela-
tively low temporal resolution (e.g. collected via Argos,
GPS and light-based geolocation) have been the focus of
most research on marine animals, although Kalman filters
have also been applied to high-resolution dead-reckoning
data in combination with depth [17, 34] and depth and
acoustic localisation data [69].
The rapid technological developments in bio-logging

will likely result in an increasing demand for analysis
methods for high-resolution data that are easy to imple-
ment and fast to compute. We achieve this in the
current study by using the fine-scale dead-reckoning
track to provide the expected 2-dimensional displace-
ment in a discrete-time correlated random walk SSM
that operates at the irregular but discrete temporal scale
of the low-resolution positional fixes. This gives us the
advantage of using the high-resolution information with-
out the computational cost associated with running a
SSM at very fine temporal scale. The disadvantage is that
the uncertainty associated with the dead-reckoning track
is ignored, so that our estimates of uncertainty in loca-
tion at times between position fixes are underestimates.
The size of the underestimation depends largely on the
time between position fixes, so the method will work
better for animals that make frequent surfacings.
Our study was motivated by the need for detailed

whale tracks in a series of controlled exposure experi-
ments (CEEs; [70]) on humpback whales (Megaptera
novaeangliae) in 2011 and 2012 in waters off Bear Island
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and Svalbard [71–73]. These experiments were aimed at
quantifying the behavioural effects of 1.3-2 kHz naval ac-
tive sonar and to test the effectiveness of a mitigation
measure called ‘ramp up’ [74]. The whales were tagged
with multi-sensor data loggers and Fastloc-GPS loggers,
and were subsequently tracked by visual observers from
a small boat. The distance between the whale and the
sound source during experiments was a crucial param-
eter; therefore, the main objective of this study was to
develop SSMs to reconstruct whale tracks from dead-
reckoning, Fastloc-GPS, and visual observations. A sec-
ondary objective was to quantify the spatial accuracy of
the Fastloc-GPS and visual (range and bearing) observa-
tions in dedicated tests, so that the observation errors
included in our models would be realistic. The track re-
construction method presented here is easy to imple-
ment and has potential application for a wide range of
marine animal species and data recording systems.
Example software and model code that users can adapt
for their own research questions are provided as supple-
mentary materials (Additional file 1).

Methods
Study subjects, equipment and data collection
Thirteen humpback whales were tagged with multi-
sensor digital recording tags (DTAGs, v2; [6]) with a
Fastloc-GPS logger (F2G 134A, Sirtrack, New Zealand)
mounted on top, at northern latitudes between 74.00°
and 79.03° and eastern longitudes between 9.79° and
20.68° in 2011 and 2012 (Table 1). The tags were

attached to each whale with suction cups using a pneu-
matic tag launching system (ARTS; [72]) or using a 15-
m carbon fibre pole, cantilevered in a bow-mounted oar-
lock [75]. The DTAGs had 1 or 2 hydrophones and re-
corded sound with 16-bit resolution, at 96 kHz sampling
rate. The DTAGs also recorded 50 Hz pressure,
temperature, tri-axial acceleration and tri-axial magnetic
field-strength data. Prior to tag deployment, the internal
clock of the DTAG was set to local time (synced to 1 s)
using a GPS receiver. Fastloc-GPS loggers were config-
ured to record a GPS snapshot almost instantaneously
after the device emerged from the water during a sur-
facing of the whale. The minimum time interval between
GPS snapshots was set to 30 s.
Focal follows of tagged humpback whales were con-

ducted from an 8-m long water jet propulsion boat with
an elevated observer platform. Each tag contained a very
high frequency (VHF) radio beacon which aided tracking
of tagged whales. The observers on the platform mea-
sured the angle to the whale relative to the boat’s head-
ing using a protractor at the time of the animal’s first
surfacing observed at least 2 min after the previous
sighting was recorded. Simultaneously, the (radial) line-
of-sight distance to the whale was measured using a
laser range finder (LRF), or estimated by eye. Because
the eye height was only ~3 m, we assumed that the dif-
ference between the line-of-sight distance and the dis-
tance over the earth’s surface [76] was negligible. To aid
locating the whale at the surface, angles-of-arrival of the
VHF signals from the tag were made visible to observers

Table 1 Summary of the data sets

Whale DTAG ID FGPS ID Initial position Track
duration

Position fixes Model
runtimeLatitude Longitude Visual FGPS

°N °E h # # h

1 mn11_157a 29 420 75.141 14.603 14.7 105 451 22.5

2 mn11_158a 29 409 74.832 16.715 7.6 70 20 0.8

3 mn11_160a 29 409 74.651 15.236 13.0 116 0 1.0

4 mn11_165e 29 409 78.074 11.824 11.3 123 205 7.6

5 mn11_176b - 77.563 12.537 2.9 44 - 0.2

6 mn12_161a 29 420, 29 510 77.556 11.277 10.9 186 0 2.6

7 mn12_164a 29 409 77.798 10.073 7.7 122 391 17.1

8 mn12_164b 29 409 77.824 9.793 3.8 68 100 2.3

9 mn12_170b 29 409 77.512 11.633 8.3 87 249 21.6

10 mn12_171b 29 409, 29 510 79.032 10.612 7.8 127 646 78.4

11 mn12_178a 29 420 74.867 17.767 7.6 50 159 4.2

12 mn12_179a 29 420 74.051 20.675 8.5 75 202 6.0

13 mn12_180b 29 409, 29 420 73.993 20.398 7.6 115 730 54.7

For each humpback whale are given the IDs of the DTAG and Fastloc-GPS loggers, geographical coordinates of the initial observed position, track duration,
number of position fixes obtained by visual observation and Fastloc-GPS, and computational runtime of the model. The DTAG ID contains information about the
species, year, Julian day and tag-of-day; for example, ‘mn11_157a’ refers to the first tag (‘a’) deployed on a humpback whale (Megaptera novaeangliae) on day 157
of 2011
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by a digital radio direction finder system (DFHorten,
ASJ Electronic Design, Horten, Norway) connected to
four 4-element Yagi antennas. All visual tracking infor-
mation (e.g. range, bearing, coordinated universal time
(UTC), range estimation method, and GPS positions of
the observation boat at 1-s intervals) were stored in a
MS Access database via the software Logger (Inter-
national Fund for Animal Welfare, Yarmouth Port, MA);
the data collection protocol is described in more detail
elsewhere ([71]).

Dedicated accuracy tests
Fastloc-GPS
We conducted ‘dry’ tests with Fastloc-GPS loggers in
2011 and 2012 at four sites (56.33°N, 2.78°W; 69.68°N,
18.99°E; 78.24°N, 15.54°E; 64.92°N, 23.25°W) to quantify
the spatial accuracy of each data logger. Measurements
were collected with the same three loggers (device IDs:
29 409, 29 420, and 29 510) that were deployed on
humpback whales. During the calibration tests, the three
devices were in a stationary position, spaced >25 cm
apart, and recorded GPS snapshots every 30 s in an out-
door space with an open view of the sky. We used
manufacturer-provided software (Archival USB, v1.11,
PathTrack, UK) to offload the pseudoranges and convert
them into position estimates based upon the relevant
daily broadcast satellite ephemeris data. Information
stored for each spatial location included the UTC time
stamp, number of GPS satellites used in the position cal-
culation, and the residual value of the position solution.
For error calculations, we assumed that the true pos-

ition of a logger was equal to the median of all of the ob-
servations for each logger. The geographical coordinates
of the observations were converted into Universal
Transverse Mercator (UTM) coordinates so that pos-
itional errors (the difference with the median coordinate)
could be expressed in meters. An observation was ex-
cluded from analysis if the residual value of its position
solution was >30 (no unit); this threshold was recom-
mended by Sirtrack ([77]) and adopted by other studies
using Fastloc-GPS (e.g. [78–80]). The error measure-
ments were divided into bins based upon the number of
satellites (‘#satellite bins’) from which data were re-
corded (4, 5, 6, 7, 8, and 9–12). Scaled t distributions
were fitted using maximum likelihood estimation via the
‘MASS’ package (v7.3-19, [81]) in the software R (v3.0.2,
[82]) to estimate the parameters of the observation error
distributions for each #satellite bin and each orthogonal
dimension. The goodness-of-fit of the distributions were
checked with one-sample Kolmogorov-Smirnov tests.

Visual tracking
Five tests were conducted in June 2012 in waters near
Tromsø, Norway (69.79°N, 19.19°E) and waters near

Longyearbyen, Svalbard (78.56°N, 14.95°E) to quantify
the accuracy of visual observations. The observers esti-
mated range (radial distance) and bearing to an orange
heavy duty inflatable buoy that had a diameter of 1.2 m.
A handheld GPS receiver (Etrex Legend HCx, Garmin,
Schaffhausen, Switzerland) with EGNOS capability was
attached on top of the buoy for recording its GPS posi-
tions for groundtruthing. A total of seven observers
participated in the tests (the same individuals who con-
ducted the focal follows on tagged humpback whales);
two or three observers participated at the same time.
The observation boat from where visual estimates were
made sailed an undetermined course, making occasional
turns, matching operations during whale tracking. To
imitate the data coverage during real focal follows, the
boat was within <200 m from the buoy for roughly 50 %
of the estimates but occasionally moved to distances of
around 1 km. One person (the ‘data recorder’) stored
the estimates in the software Logger and gave vocal
commands. Once every 2 min, the data recorder called
out “Ready”, which indicated to the observers to start
looking for the target and to the driver to adopt a steady
course. About 10 s later, the data recorder called out
“Mark”, which indicated to the observers to make their
estimates and write them down on paper. We limited
the time that the observers could look at the target be-
cause this influences the accuracy of the range estimates
[83]. The estimates for range were made visually by the
observers, and protractors were used to measure the
bearing relative to the heading of the boat. The same ob-
servation boat and data collection protocol were used
during the focal follows of the humpback whales (details
in [71]).
The absolute bearing (relative to true north) to the

whale from the boat at the time of a sighting was calcu-
lated by adding the boat’s course-over-ground derived
from GPS to the relative bearing to the whale. Linear er-
rors in range and bearing were calculated as the differ-
ence between the visual estimates and the ‘true values’
derived from the GPS positions of the buoy and the ob-
servation boat. The linear range errors were clearly a
function of range itself (and thus ‘heteroskedastic’), so
percent error in range was used instead of absolute error
(i.e. a multiplicative error model was used). To test for
potential remaining range-dependency, we fitted a linear
regression model to the percent error in range as func-
tion of true range in MATLAB (v8.1; The Mathworks,
Natick, MA). A wrapped Cauchy distribution was fitted
to the angular errors in bearing in R using the package
‘circular’ (v0.4-7, [84]).

Process model
Position fixes (with respect to the Earth frame of refer-
ence) of the humpback whale at the sea surface naturally
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occurred at irregular time intervals. The process model
in our model framework operated on the relatively
coarse time scale of these fixes. This greatly reduced
computational time, but had the disadvantage that the
dead-reckoning errors were not fully incorporated and
thus underestimated the positional uncertainty between
fixes. The SSM described here is therefore an approxi-
mation to a full SSM that would run on the finer time
scale of the tag data. The humpback whale data set con-
tained relatively high rates of position fixes (average of
0.1-1.9 observations/min; n = 13; Table 1), and at those
rates the contribution of dead-reckoning on the uncer-
tainty was relatively minor compared to the uncertainty
from the positional observations. We therefore com-
bined a fairly simple process model with relatively realis-
tic positional observation models.
For the process model, we defined J as the number of

position fixes, j = 1,…,J as the index over these fixes, and
Δj as the time interval between tj and tj + 1. We wrote
scalars in italic and vectors in bold italic. Only the hori-
zontal (xy) plane was considered because the depth of
the whale (i.e. the z-coordinate of its position) was mea-
sured with a highly accurate sensor and therefore as-
sumed to be observed without error. The process model
essentially combined the whale’s position given by the
high-resolution dead-reckoning track (see next section)
with a velocity correction term. Specifically, given an ini-
tial unobserved whale position x1, the unobserved whale
positions xj at tj were derived using the algorithm

xjþ1 ¼ xj þ ddr
j þ vcorj Δj; ð1Þ

where dj
dr is the whale’s expected displacement over Δj

given by the uncorrected dead-reckoning track, and vj
cor

is the velocity correction for the track segment. This
correction term can be interpreted as the mean ‘bias’ or
‘drift’ in velocity over Δj [1, 5], although in many studies
using movement models these qualifications refer to the
mean velocity of the animal itself [85]. To reflect our be-
lief that vcor could only change slowly over time, we as-
sumed that its process was a non-directional first-order
Gaussian random walk,

vcorjþ1 eMVN vcorj ;ΣΔj

� �
ð2Þ

where the process noise variance-covariance matrix

Σ ¼ σ2x 0
0 σ2y

� �
and σx

2 and σy
2 represent the variances

for the x- and y-dimension. The covariance term was set
to 0 as the process noise was assumed to be independent
between the two spatial dimensions. A linear relationship
of Σ with Δj was incorporated to account for the dead-
reckoning errors that grow with time.

Determining the dead-reckoning track
We describe here how the uncorrected dead-reckoning
track was derived from the high-resolution observations.
As mentioned earlier, no observation models were incorpo-
rated for these tag-derived data. We defined I as the num-
ber of high-resolution observations, i = 1,…,I as the index
over these observations, and Δi as the time interval between
ti and ti+ 1. The whale’s uncorrected velocity vi for Δi was

vi ¼ si cos pið Þ cos hið Þ
sin hið Þ

� �
; ð3Þ

where si is the whale’s speed-through-water, and pitch pi
and heading hi describe the orientation of the whale’s body
with reference to the Earth frame [35]. Vector vi may be
used to calculate the uncorrected dead-reckoning track
using the algorithm xi + 1 = xi + viΔi; however, because
the process model operated on the coarser, irregular
time scale tj determined by the position fixes, we inte-
grated vi with respect to time in the domain ti = [tj, tj + 1)
to find the whale’s uncorrected displacement dj

dr that was
used in Eq. 1:

ddr
j ¼

Xtjþ1

ti¼tj
viΔið Þ: ð4Þ

Positional observation models
A set of equations stochastically related each whale’s un-
observed position xj at time tj to the observations of
range (radial distance), bearing, and/or Fastloc-GPS. The
observation error structures were based upon the results
of the dedicated accuracy tests (see ‘Results’). Specific-
ally, the observation model relating the observed Fastloc-
GPS position, Xx,j

F , to the unobserved whale position for
the x-dimension was

XF
x;j e t xx;j; σ

F
x;q; υ

F
x;q

� �
; ð5Þ

with a similar formulation for the y-dimension. Param-
eter σq

F represents the scale and υq
F the shape (or, degrees

of freedom) of the scaled t distribution. Because Fastloc-
GPS accuracy is related to satellites [50, 55], we used the
parameter estimates obtained from the dry test data as
fixed values for σq

F and υq
F (where quality q = 1,…,6 in-

dexes the 4, 5, 6, 7, 8, and >8 satellite bins, respectively)
in an approach similar to the use of Argos quality classes
in other studies (e.g. [65]).
The observation model implemented for range between

observer and whale at the surface was

Rj eN rj; rjσ
r
m=100

� �
; ð6Þ

where Rj is the observed range and rj is the unobserved
range. Thus, we assumed that the observation error was
normally-distributed around 0 %, which was close to the
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truth according to the visual observer tests (see ‘Results’).
Scale parameter σm

r represents the percent error SD for
m = 1, 2, where range estimation method m = 1 if esti-
mates were made visually (by eye), and m = 2 if a laser
range finder was used to make the measurement. Its value
for m = 1 was based upon the visual accuracy tests and
for m = 2 was assumed to be 10 %. The observation
model implemented for absolute bearing between the
observer and the whale was

Φj ewC φj; ρ
� �

; ð7Þ

where Φj is the observed bearing, φj the unobserved
bearing, and ρ is the scale (or, concentration) of the
wrapped Cauchy distribution that was derived from the
visual accuracy tests.
Finally, we related the unobserved difference in position

between the observation boat and the whale (dj
bw = xj − xj

b)
to the unobserved range and bearing via a Cartesian-to-
polar coordinate transformation:

rj ¼ dbw
j

��� ���; and ð8Þ

φj ¼ tan−1 dbw
x;j =d

bw
y;j

� �
; ð9Þ

where tan− 1 is the four-quadrant arctangent to realise
φj =(−180°, 180°]. The position of the observation boat
xj
b was measured with a GPS receiver with an average

error of <3 m (unpublished data). This GPS receiver
was located within 1 m from the visual observers;
therefore, xj

b was set to be equal to the Cartesian coordi-
nates of the measured GPS positions (the model can be
easily adapted to include error on the observer boat’s
position).

Data processing and model fitting
Pre-processing
Procedures for offload, calculation and filtering of data
collected by the deployed Fastloc-GPS loggers were the
same as for test data (see for details: ‘Methods – Dedi-
cated accuracy tests’). Using a conversion from geo-
graphical to UTM coordinates, all positions of the whale
and the observation boat were placed in a Cartesian co-
ordinate system with at the origin (x = 0, y = 0) the first
observed position of the whale (Table 1). We temporally
aligned the position fixes of the same surfacing to fur-
ther reduce computational costs. This was accomplished
by 1) identifying pairs of Fastloc-GPS observations that
were observed within 5 s of one another and replacing
the timestamp of the last fix with that of the first (only
for whales that had two GPS loggers attached), and 2)
replacing the timestamps of the visual observations that
were made ±5 s from a Fastloc-GPS observation by the
timestamp of the Fastloc-GPS observation. The 5-s

interval was judged to be the longest time interval that
could not result in observations from separate whale
surfacings being falsely aligned, and was based upon an
exploratory analysis in which the times of position fixes
were plotted on the corresponding dive profile.
For each tag record, data on depth, acceleration and

magnetic field strength from the DTAG were down-
sampled to 1 Hz resolution (Δi = 1 s) using a DC accur-
ate decimating filter. The whale’s pitch (pi) and heading
(hi) were derived from the acceleration and magnetic
field measurements following the techniques detailed
elsewhere [35]. Estimates of the whale’s speed-through-
water (si) based upon depth rate per second divided by
the sine of pitch during steep (i.e. |pi| > 50°) descents
and ascents [39] were regressed against the uncalibrated
(1-s root-mean square) noise level (Li) in the 66–94 Hz
frequency band [21] using the model:

log sið Þ eN β0 þ β1Li; σ
L

� �
; ð10Þ

where β0, β1 and σL are model parameters. This function
should be an appropriate model according to the physics
of flow noise [86], although empirical verification is rec-
ommended on a case-by-case basis. Both body pitch and
noise level were low-pass filtered using a zero-group-
delay fast impulse response filter with a 0.15 Hz cut-off
frequency to remove fine-scale temporal variations such
as from fluke strokes to generate thrust [87]. The fitted
function was used to predict si from Li throughout the
entire tag record, including the regions of shallower
pitch [40, 88]. Flow noise is likely to be influenced by
noise generated by the sea surface when the whale is at
shallow depth; therefore, speed-through-water estimates
for each period where the whale was at <5 m depth
were replaced using a linear interpolation of the start and
end values of the period.

Fitting the track reconstruction model
Model fitting was performed using Markov chain Monte
Carlo (MCMC) algorithms in the software JAGS (v3.4.0,
[89]) through an interface with MATLAB. We assigned
uniform priors to most parameters: σx ~Unif(0, 0.1), σy~
Unif(0, 0.1), vx,1

cor~Unif(−1, 1) and vy,1
cor ~Unif(−1, 1); only

the initial position of the whale had informative priors that
reflected the accuracy of its observation (Table 2). Thir-
teen models were fitted to the data set; one for each whale
record. To assess whether parameters converged to sta-
tionary distributions, we ran two MCMC chains with
different initial values. Each chain had a burn-in period
of 200,000 samples and a total run length of 280,000
samples, and was downsampled (thinned) by a factor of
5 to reduce memory load. Mixing and stationarity were
assessed by visual examination of trace plots and using the
Brooks-Gelman-Rubin statistic R̂ [90]. MCMC chains
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were run in parallel on multiple cores of a desktop com-
puter (Intel i7-4930 K processor with six physical cores;
32 GB of RAM; 64-bit MS Windows 7 operating system);
up to three models were fitted at the same time.

Post-processing
The JAGS output included the posterior estimates of the
low-resolution track (xj; the whale positions at the times
of the position fixes); posterior estimates of the high-
resolution track (xi) were calculated in a post-processing
analysis. To obtain the final (corrected) position esti-
mates with uncertainty, 3,200 high-resolution track rea-
lisations (or ‘posterior sample tracks’) were calculated
from 1,600 computed iterations (10 % of the total) using
the whale’s uncorrected velocity vi derived with Eq. 3,
the posterior samples of the whale’s initial position x1,
and the posterior samples of the velocity correction vj

cor.
The JAGS code of the model, an example data set,
and code for data processing in MATLAB is given in
Additional file 1.

Cross-validation to assess model performance
A form of 10-fold cross-validation [91] was conducted
to compare the performance of our method to other
track reconstruction methods. Specifically, the cross-
validation analyses tested how well out-of-set Fastloc-
GPS positions were predicted by the state-space model
and the other methods. Only Fastloc-GPS position fixes
were part of this analysis as they were generally more ac-
curate than the visual position fixes (see ‘Results’) and
less likely to include temporal autocorrelation. First, we
left out every 10th Fastloc-GPS observation (the ‘valid-
ation data’) and fitted the state-space model to the
remaining observations (the ‘training data’). For each ob-
servation in the validation set, we then measured the

positional (cross-validation) error relative to the follow-
ing horizontal track types: 1) the mean posterior track
based on the state-space model fitted to the training
data, 2) a track with linear interpolation between the
training data, 3) a track with linear interpolation be-
tween visual position fixes (excluding fixes that occurred
during the same surfacings as the validation data), and
‘forced-point’ dead-reckoning tracks that were stretched
to match the training data [5] and initially calculated
with 4) constant speed or 5) speed derived from flow
noise. The procedure was iterated 10 times per whale,
each time changing the validation set indices to leave
out a different 10 % of the Fastloc-GPS observations.
Cross-validation analyses were conducted for three dif-
ferent whales (IDs 1, 7, and 11) and positional errors
were averaged within their #satellite bin to assess overall
model performance.
Because the rate of Fastloc-GPS fixes was relatively

high for these three whales (~1 fix every 2 min; Table 1),
a second type of cross-validation was conducted in
which the validation set was created by taking a series of
five consecutive positions instead of a single position,
leaving the next five consecutive positions in the training
data set. Therefore, instead of omitting 10 % of the ob-
servations at each iteration, 50 % of the observations
were omitted (periods that averaged 10 min) at each it-
eration, and the same Fastloc-GPS positions were part of
the validation set five times. Calculation of the positional
cross-validation errors was the same as described above,
except that visual position fixes were excluded during
the whole time interval spanning the five consecutive
Fastloc-GPS observations.

Results
Fastloc-GPS accuracy tests
A total of 35,347 location observations were collected
during ‘dry’ tests with Fastloc-GPS loggers (n = 3) in
fixed positions, which amounted to a total of 4.9 days’
worth of data. The number of observations assigned to
the 4, 5, 6, 7, 8, >8 satellite bins was 3,864 (11 %), 4,690
(13 %), 5,648 (16 %), 6,402 (18 %), 6,102 (17 %) and
8,641 (24 %), respectively. Only 0.2 % of these observa-
tions had residual values >30 and were omitted from the
final data set (all sites and devices combined). The
spatial errors of the three loggers were similar within
each #satellite bin, although one logger (ID 29 420) ac-
quired data from a greater number of satellites on aver-
age (7.7) than the other two loggers (6.5 and 6.7)
(Additional file 2: Figure S1) and thus recorded more
positions of higher accuracy. There were some indica-
tions that the errors differed somewhat across test sites,
possibly because of differential weather conditions, but
this comparison was limited by low numbers of observa-
tions in some of the subsets (Additional file 2: Figure

Table 2 Prior probability distributions for all parameters
estimated

Parameter Description Prior

σx Process error standard deviation,
x-dimension

Unif(0, 0.1)

σy Process error standard deviation,
y-dimension

Unif(0, 0.1)

vx,1
cor Initial velocity correction, x-dimension Unif(−1, 1)

vy,1
cor Initial velocity correction, y-dimension Unif(−1, 1)

xx,1 Initial whale position, x-dimension (1) t(0, σx,qF , υx,qF )

Initial whale position, x-dimension (2) N(0, R1σmr /100)

xy,1 Initial whale position, y-dimension (1) t(0, σy,qF , υy,qF )

Initial whale position, y-dimension (2) N(0, R1σm
r /100)

Uniform priors were assumed for σ and v1
cor. Prior distributions for the initial

unobserved whale position x1 reflected our prior knowledge about the
accuracy of the initial observed position (at coordinates x = 0, y = 0). These
priors therefore depended upon whether the position was observed (1) using
Fastloc-GPS or (2) visually. Values for the priors on σ and v1

cor are in metres
per second
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S1). For both spatial dimensions (x and y), the accuracy
of the Fastloc-GPS observations was positively related to
the #satellites used in the position calculation (Fig. 1).
The positional errors in the final data set were well de-
scribed by the scaled t distribution (Fig. 1; Kolmogorov-
Smirnov tests, p > 0.05 for each distribution). The max-
imum likelihood estimates and standard errors (SEs) for
μF, σF, and υF are provided in Table 3. The obtained error
distributions were symmetric (μF close to 0 m) and ~1.3
times narrower in the x-direction than in the y-direction
(σy

F/ σx
F; see also Fig. 1 and Additional file 2: Figure S1).

Estimates for υF increased with the #satellites from about
one (Cauchy errors) for 4 satellites to about eight
(approximating Gaussian errors) for >8 satellites.

Visual accuracy tests
The accuracy tests with human observers (n = 7) pro-
duced a total of 220 visual observations of range and
bearing used to estimate location. Each test took
~40 min; the combined duration of the data collection
periods was 3.2 h. Despite modest sample sizes, the per-
cent errors in range and angular errors in bearing were
reasonably well described by the Normal and wrapped

Cauchy distributions, respectively (Fig. 2; Kolmogorov-
Smirnov test with range data, p > 0.05). The slope of the
percent error in range regressed against the true range
was significantly different from 0 at p = 0.02, indicating
that the percent error overestimated at close range and
underestimated at large range, but this effect was very
small (0.027 % per metre; Fig. 2). There was very little
consistent negative bias in the estimates of range (μ:
−2.95 %) and bearing (μ: −1.24°). Visual estimates of
range were relatively inaccurate (σ1

r : 30.2 %) compared
to the bearing estimates (ρ: 0.897; circular SD: 11.6°).
The positional uncertainty of a whale location obtained
through visual observation will therefore be highly asym-
metrical in Cartesian coordinates, further justifying the
use of a range-and-bearing observation model to incorp-
orate the anisotropic errors.

High-resolution tracks of humpback whales
Visual examination of the trace plots of the estimated
parameters confirmed that convergence was always
reached within the burn-in phase, MCMC chains were
stationary, and sufficient posterior samples were

Fig. 1 Error distributions from Fastloc-GPS accuracy tests. Scaled histograms (grey bins) of the Fastloc-GPS positional errors and the corresponding
pdfs (black lines) of the scaled t distributions are shown as functions of spatial dimensions x and y and the number of satellites used in the
position calculation. All graphs are truncated at ±130 m for clarity, although positional errors of several kilometres were occasionally observed
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obtained. This was corroborated by R̂ values of ≤1.05 for
each parameter (Additional file 3: Table S1). The model
runtime varied greatly across whales (range: 0.2 to
78.4 h; Table 1) and depended strongly upon the number
of position fixes (especially from Fastloc-GPS).
We first provide an example of a reconstructed fine-

scale track using the results for whale 11. This whale
remained in an area of about 5 × 4 km (x × y) for the full
7.8 h duration of the track (Fig. 3). The whale’s horizon-
tal movements ranged from very directional with slow
clockwise turns and little short-term heading variation
to very non-directional with large short-term heading
variation. In general (and as expected), the most prob-
able (posterior mean) whale positions were very close to
the Fastloc-GPS fixes, further from position fixes made
with laser range finder, and the furthest from position
fixes for which range was estimated by eye (Fig. 3). Rep-
etitions of bursts of speed (up to 3–4 ms−1) concordant
with rapid changes in depth suggested that this whale
performed multiple feeding ‘lunges’ (i.e. feeding events
in which the animal speeds up to engulf large volumes
of water and filter prey; [87, 88]) in the bottom phase of
most dives. The whale’s uncorrected velocity v over the
whole track ranged between −3.6 and 3.2 ms−1 in the x-dir-
ection (min/max vx

cor: −0.2/1.0 ms−1) and between −4.3 and
4.0 ms−1 in the y-direction (min/max vy

cor: −0.9/0.3 ms−1).
Some sudden changes in vcor appeared to correspond with
changes in the movement parameter values for this animal
(e.g. the shallow diving period starting at 04:00 UTC). The
velocity correction process for this whale was relatively

Table 3 Fastloc-GPS test results

Parameter Number
of
satellites

X-dimension Y-dimension

Estimate SE Estimate SE

μF(m) 4 0.57 0.56 −1.06 0.76

5 0.21 0.38 −0.41 0.49

6 0.02 0.22 0.17 0.28

7 0.01 0.16 0.10 0.20

8 −0.01 0.14 0.39 0.17

>8 0.08 0.09 −0.01 0.11

σF(m) 4 24.51 0.68 34.07 0.03

5 19.11 0.42 25.37 0.04

6 13.10 0.23 17.12 0.10

7 10.69 0.16 14.23 0.19

8 9.28 0.14 11.56 0.42

>8 7.77 0.10 9.35 0.65

υF(−) 4 0.93 0.90 1.08 0.03

5 1.44 0.55 1.64 0.05

6 2.53 0.29 2.73 0.11

7 3.91 0.21 5.32 0.34

8 5.83 0.18 6.86 0.58

>8 8.17 0.12 7.72 0.61

Scaled t distributions were fitted to the positional errors measured during the
Fastloc-GPS accuracy tests. Maximum likelihood estimates and standard error
(SEs) are provided for location μF, scale σF, and shape υF for each spatial
dimension and number of satellites used for the position calculation
(#satellite bin)

Fig. 2 Error distributions from visual accuracy tests. Distributions of (left) angular errors in the bearing from the observer to the whale, and
(middle) errors in range expressed as a percentage of true range. Grey bins represent scaled histograms of the observation errors and black lines
represent the pdfs of the fitted distributions (wrapped Cauchy for bearing; Normal for range). The scatterplots in the right panels illustrate: (top)
the range estimated by the observers during tests as function of the true range derived from GPS positions, and (bottom) the range percent
errors vs. true range, with the fitted linear regression line indicating little tendency for under- or overestimation
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volatile (posterior means for σx and σy of 0.014 and
0.012 ms−1, respectively) compared to that of other whales
(Table 4; Additional file 4: Figures S2-S14).
The complete data set of 13 whales contained large dif-

ferences in movement patterns and behaviour (Additional
file 4: Figures S2-S14), and detailed visual inspection of
the tracks suggested that the track reconstruction model
performed satisfactory under a wide range of conditions.
The positional uncertainty in tracks with none or few
Fastloc-GPS fixes (e.g. whales 2 and 3; Table 1) was gener-
ally greater than for tracks with many Fastloc-GPS fixes
(e.g. whales 7 and 13). Clear differences in the posterior
mean estimates of vcor were observed among animals
(Additional file 4: Figures S2-S14); while in some cases its
values remained close to 0 ms−1 for the entire track dur-
ation (e.g. whales 1 and 9), in others its values gradually
changed over time (e.g. whale 13) or values indicated a
strong consistent bias in one direction (whale 3). This
between-animal variation in vcor was also reflected in the
posterior mean estimates of σ, which ranged between
0.003 and 0.015 ms−1 and were often similar between x-
and y-dimensions (Table 4; Additional file 5: Figure S15).

Fig. 3 Example of a reconstructed track. Shown on the left are (top) the full, most probable track (i.e. the posterior means of x) and position fixes
of humpback whale 11 and (bottom) a detailed view of sections of the track. Visual position fixes were derived from ranges that were estimated
by eye or measured using a laser range finder (LRF). Information only shown in the bottom panel: the GPS positions of the observation boat,
10 % of the computed whale track realisations, and the most probable whale positions at the times of the fixes (tj) with their 95 % confidence
ellipses [109]. Movement parameters of the track are shown in the panels on the right: (from top to bottom) the whale’s body pitch and heading
angles measured in the Earth frame, the whale’s speed-through-water derived from flow noise, the uncorrected velocity of the whale, the
posterior mean velocity correction with 95 % credibility intervals (CIs), and the depth of the whale (z-axis coordinate of its position)

Table 4 Posterior probability distributions

Whale Estimated parameter

σx (ms− 1) σy (ms− 1)

mean SD 95 % CI mean SD 95 % CI

1 0.006 0.001 0.004-0.008 0.005 0.001 0.004-0.006

2 0.010 0.002 0.007-0.014 0.009 0.001 0.006-0.011

3 0.009 0.001 0.007-0.012 0.010 0.001 0.008-0.012

4 0.007 0.001 0.005-0.009 0.007 0.001 0.005-0.009

5 0.008 0.003 0.004-0.015 0.015 0.004 0.009-0.023

6 0.006 0.001 0.004-0.007 0.007 0.001 0.005-0.009

7 0.007 0.001 0.006-0.009 0.006 0.001 0.005-0.008

8 0.006 0.001 0.004-0.008 0.007 0.001 0.005-0.011

9 0.004 0.000 0.003-0.004 0.003 0.000 0.003-0.004

10 0.014 0.001 0.012-0.015 0.012 0.001 0.010-0.013

11 0.014 0.001 0.012-0.017 0.012 0.001 0.010-0.015

12 0.005 0.001 0.004-0.007 0.012 0.002 0.009-0.015

13 0.010 0.001 0.008-0.011 0.009 0.001 0.007-0.010

Mean, standard deviation (SD) and 95 % credibility interval (CI) of the marginal
posterior distributions are provided for the velocity correction process SDs, σx
and σy. For the posterior summaries of v1

cor and x1, readers are referred to
Additional file 3: Table S1
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Model performance
Results of the cross-validations were based upon a com-
bined (n = 3 whales) validation set of 206, 247, 212, 161,
96, 44, and 29 unique Fastloc-GPS positions (for 4, 5, 6,
7, 8, 9, and >9 satellites, respectively). Positional cross-
validation errors indicated that the mean posterior
tracks of the Bayesian SSMs most closely approximated
the validation data and the mean measurement errors
from the dry tests compared to other track reconstruction
methods (Fig. 4). Performance varied across methods,
with the forced-point dead-reckoning tracks being, on
average, more accurate than the tracks with linear
interpolation between Fastloc-GPS fixes and tracks with
linear interpolation between visual fixes (Fig. 4). Mean
cross-validation errors decreased with increasing #satel-
lites for all track types, indicating that the measurement
errors of the validation data formed part of the cross-
validation errors. As expected, the cross-validation errors
were greater and the differences between methods greater
when the validation sets contained blocks of 5 consecu-
tively observations (simulating periods of ~10 min without

data collection) instead of single observations (Fig. 4).
However, the above results regarding which method per-
formed best and the decreasing error with #satellites were
the same for both 10 % and 50 % data removal.

Discussion and conclusions
Accurate tracking of marine animals (e.g. mammals,
penguins, and turtles) with high-resolution multi-sensor
data loggers has become increasingly important in ecol-
ogy and conservation biology [6, 92]. These data loggers
have already provided valuable information on topics
such as foraging behaviour [20, 88, 93–95], time and
energy budgets [96, 97] and human impacts [26, 98, 99],
but the number of methods available for analysis of
marine animal movements from high-resolution data is
still very limited. To partially address this gap, our study
describes an effective SSM framework that is designed
for relatively fast reconstruction of fine-scale tracks
combining visual, Fastloc-GPS, and dead-reckoning
data. Empirical data from accuracy tests formed the
basis of the observation models.

Fig. 4 Results of the cross-validation analysis. Cross-validation errors (mean ± 2 s.e.m.) are shown as function of the number of satellites of the
validation set (i.e. the out-of-set Fastloc-GPS data) for analyses where (left) single positions were omitted (10 % of data) and (right) series of five
consecutive positions were omitted (50 % of data). Positional cross-validation errors were calculated for five different track types: 1) a track with
linear interpolation between visual position fixes (♦), 2) a track with linear interpolation between Fastloc-GPS position fixes (×), ‘forced-point’
dead-reckoning tracks initially calculated with 3) constant speed (■) or 4) speed from flow noise (▼), and 5) the mean posterior track of the
Bayesian state-space model (●). One-dimensional positional errors for Fastloc-GPS derived from the large data set collected during dry tests (▲)
are shown for comparison (see also Additional file 6: Figure S16). Symbol horizontal positions have been offset for clarity
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Visual observation is a method that is often used for
accurate tracking of marine mammals at the surface
(e.g. using land-based theodolite tracking [23], boat-
based focal follows [43], or stereo photogrammetry
[100]), but a quantitative assessment of its accuracy, as
presented in this study, is relatively uncommon. The
visual accuracy tests with a floating buoy showed that
the errors in range generally contributed most to the
combined positional error from range and bearing ob-
servations, which is consistent with results from more
extensive testing during transect line surveys [101]. The
average range estimation error (SD: 30 %) was similar
to those of naturalists on whale-watching vessels (25 %)
and less similar to range estimates of captains (19 %)
and members of the general public (45 %) on these
same vessels [102].
The use of the normally-distributed percent error for

range was a practical way to scale the error with dis-
tance, although a minor range-dependent effect in the
transformed data remained. Error models for range
based upon distributions such as the gamma or log-
normal may be more appropriate in certain situations
[103]. The accuracy tests were designed to emulate the
real focal follows as much as possible by, for example,
using the same platform and observers, and limiting the
duration that the target was visible to the observers [83].
However, these tests were not exhaustive and the esti-
mated errors were likely only reasonable approximations
to the actual errors during focal follows. We did not ac-
count for observer-specific differences in the visual esti-
mates for a number of reasons (i.e. recording who made
each observation was not part of the field protocol, low
sample size per observer for accuracy tests, and the es-
timation error of one observer from 2011 was not
quantified), but future studies could incorporate
observer-specific range and bearing errors within the
model framework.
The estimated accuracy of the three Fastloc-GPS loggers

was roughly comparable to other reports [48, 50, 55] when
we quantified accuracy in terms of 1-dimensional spatial
error (Additional file 6: Figure S16). For example, we
found that 50 and 95 % of the errors in positions based on
4 GPS satellites were within 50 and 633 m, respectively. In
comparison, the values for these respective percentiles in
[48] were 50 and 810 m and in [50] were 36 and 724 m.
The differences in accuracy compared to these other stud-
ies were likely caused by factors related to satellite cover-
age, atmospheric conditions and individual receiver
sensitivity. One important conclusion from the calibration
tests was that Fastloc-GPS errors differed between the two
orthogonal dimensions, as has been described for the
Argos system [104]. It is therefore advisable to always re-
port the latitude/northing error and longitude/easting
error separately.

The on-animal accuracy of Fastloc-GPS loggers may
vary somewhat from the accuracy measured during dry
tests because of variation in tag placement position on
the animal, recording settings, and slowly-changing at-
mospheric effects such as humidity, pressure, and iono-
spheric delay. Therefore, in the future, such covariates
could be incorporated within SSM frameworks to inves-
tigate their relative contributions or to further improve
measurement error structures and track accuracy.
This study was motivated by the need for accurate

position estimates (with uncertainty) of the whales dur-
ing relatively short (10–15 min) experimental periods
during which naval sonar signals or control stimuli were
transmitted under water [28, 73]. In a parallel analysis of
the same data set, acoustic propagation modelling will
be used for predicting the received sound levels at the
locations of the whales. Because relatively short dis-
tances between the sonar source and the whales oc-
curred during experimental periods, the estimates of
distance and their variability can greatly affect modelled
received sound levels. The reconstruction of fine-scale
tracks is only the first step in the assessment of hump-
back whale natural behaviour and responsiveness to
sonar; other planned analyses include the classification
of discrete behavioural states and behavioural responses
based on the reconstructed tracks and auxiliary informa-
tion. However, visual tracking and Fastloc-GPS are rela-
tively accurate compared to most alternative positioning
technologies (such as Argos [62, 78]), and many research
questions can be sufficiently addressed without the use
of complex methods such SSMs. Possible alternatives
are removing part of the data based upon unrealistic
speeds [105] or #satellites used in the position calcula-
tion [55, 80]. Also, various interpolation methods are
available for estimating the track between known pos-
ition fixes [106].
There are many sources of error that can influence

dead-reckoning of animals under water. Eq. 3 hints at
one such source of error; the animals naturally move in
the water frame of reference and speed is measured in
this frame, but the orientation of the whale, used to de-
rive velocity, is measured in the Earth frame (which is
eventually of most interest). In addition, water currents
may vary with depth due to the Ekman spiral, sensor er-
rors accumulate with time, and speed estimates are often
biased and not continuously observed. Also, marine ani-
mals do not always move in the same direction as their
(flexible) body is oriented due to inertia, buoyancy, and
hydrodynamic lift forces (caused by large pectoral fins,
for example) [6]. Suction-cup tags can occasionally move
over the whale’s body, which means that the correction
angles for the conversion from tag to animal frame, as
well as the flow noise/speed-relationships, may vary
throughout the tag record. Because of this complex mix
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of errors, we essentially sacrificed some realism for prac-
ticality and implemented our relatively simple process
model as a correlated random walk on the joint error in
horizontal velocity. Visual inspection indicated that vcor

co-varied with the movement parameters for some ani-
mals, but in other tracks small and consistent offsets
likely caused by water current appeared to be the domin-
ant factor (Additional file 4: Figures S2-S14). More in-
depth analysis of the estimates of vcor may provide further
insights in the relative contributions of the sources of
errors in the tracks.
The model structure presented here was written in the

BUGS language (Additional file 1) and is therefore easy to
use and adapt. Fitting the models with MCMC had the
advantage that the non-Gaussian observation error struc-
tures for Fastloc-GPS and bearings were easy to imple-
ment, but also made model fitting relatively slow
(Table 1). To make model fitting with MCMC possible,
measurement errors were not modelled at the time step of
the high-resolution data. As a result, the model underesti-
mated the positional uncertainty in the track when fixes
were not observed. This effect was likely to be small for
the short track segments in this study but will increase
with the time since the most recent location measure-
ment. More realistic confidence bounds could conceivably
be added to the track segments between surfacings using
a Kalman filter that is conditioned on the start and end
points of each track realisation.
By accounting for the observation errors in the position

fixes, our model can provide a clear improvement over sim-
pler methods to georeference dead-reckoning tracks [5].
Similarly, compared to tracks derived only from position
fixes [73], the inclusion of dead-reckoning data greatly im-
proved the level of detail in the reconstructed humpback
whale tracks (Additional file 4: Figures S2-S14). Cross-
validation analyses confirmed that out-of-set Fastloc-GPS
locations were better predicted by our model framework
than by simpler track reconstruction methods that do not
allow for positional observation error. Independent valid-
ation of our technique might be (partially) possible in the
future using double tagging experiments (e.g. [56]) with
conventional GPS, using passive acoustic locations of
animals that vocalise underwater [107], or using current
velocity data from acoustic Doppler current profilers or
numerical ocean models.
Being a recursive method, dead-reckoning generally

results in positional errors that increase with time, and
the speed of the water current may have a particularly
large influence on these errors. Knowing the rate at
which model performance deteriorated would be useful
for scientists studying different species or for users of ani-
mal data loggers who need to decide on position sampling
schemes. However, a preliminary analysis (not shown
here) of the cross-validation errors against time to the

nearest Fastloc-GPS position did not consistently demon-
strate this trend of decreasing model performance, likely
because of the relatively large contribution of Fastloc-GPS
observation errors and because time intervals between lo-
cations were relatively short (<10 min).
The integration of Fastloc-GPS, depth, speed and

inertial sensor data is an exciting development that
opens the door to the reconstruction of georeferenced
3-dimensional movement tracks with relatively high
precision compared to existing positioning methods.
As similar track reconstruction approaches are cur-
rently being developed [107, 108], a systematic com-
parison of the tracks produced by the different
techniques in the future would be valuable. High-
resolution animal tracks have the potential to answer
fascinating scientific questions about, for example,
predator movements in relation to prey fields, dyna-
mics of group movement, impacts of human disturb-
ance on behaviour, and how foraging effort and
success relate to individual and population fitness.
The advancement of bio-logging technology is rapid
and, in our opinion, scientists will benefit from the
use and development of analysis methods that make
the most out of the growing wealth of information.

Availability of supporting data
The data set of whale 11, the JAGS model code, and
examples of MATLAB code used in the analysis are in-
cluded as additional files with the article (Additional file 1).

Additional files

Additional file 1: Example data set, JAGS model, and MATLAB
code. Compressed file including the data set of whale 11, the JAGS model
code, and example MATLAB code to process the data, fit the model, and
reconstruct the high-resolution track shown in Fig. 3. (RAR 2041 kb)

Additional file 2: Figure S1. Boxplots of the Fastloc-GPS positional
errors for the three data loggers (29409, 29 402, and 29 520, from top to
bottom), four calibration test sites (A: 56.33°N, 2.78°W; B: 69.68°N, 18.99°E; C:
78.24°N, 15.54°E; D: 64.92°N, 23.25°W), and six #satellite bins (4, 5, 6, 7, 8, and
>8). The sample size for each subset is indicated on the right vertical axis.
Outlier data points were omitted to improve readability. (PDF 19 kb)

Additional file 3: Table S1. Posterior statistics and R values. Table with
the mean, SD, and 95 % CI for the posterior distributions of parameters
σx, σy, vx,1cor, vy,1cor, xx,1, xy,1, and the values of convergence statistic R . (XLSX 17 kb)

Additional file 4: Figures S2-S14. Figures of the reconstructed tracks
and movement parameter time series for all whales. See the caption of
Fig. 3 for more details about the information that is plotted. Note that
the scale of the depth axis differs per whale. (PDF 18518 kb)

Additional file 5: Figure S15. Posterior distributions for all whales.
(PDF 91 kb)

Additional file 6: Figure S16. One-dimensional Fastloc-GPS errors.
Positional errors during calibrations were represented as radial distances
from the median and plotted against the cumulative percentage of
positions for comparison with other studies. Each line represents a subset of
data based upon the number of satellites (4 to 12) used for the position
calculation. The insert shows the pdfs for the 9 satellite coverage categories.
The graphs were truncated at 100 m for clarity. (PDF 12 kb)
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