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Breeding short-tailed shearwaters buffer local
environmental variability in south-eastern
Australia by foraging in Antarctic waters
Maud Berlincourt* and John P. Y. Arnould
Abstract

Background: Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better
understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of
nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction
that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks
should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic
(short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements
and habitat use were investigated over three breeding seasons (2012–14) at two colonies in southeastern Australia.

Results: Most individuals performed daily short foraging trips over the study period and inter-annual variations
observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips
in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited
similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging
range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic
waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity.
Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014
indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging
range in the Southern Ocean.

Conclusions: This study highlights the importance of foraging flexibility as a fundamental aspect of life history in
coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies
are use to buffer this variability.
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Background
In the marine environment, top predators generally rely
on resources that are sparse, patchily distributed and
seasonally variable [1–3]. Consequently, flexibility in
their foraging behaviour in response to environmental
changes is crucial, as it is relevant to breeding perfor-
mances and population dynamics [4–6]. Individuals are
expected to adjust their foraging effort to meet their
own energy requirements and provision their offspring
[7, 8]. However, the capacity to increase foraging effort
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is limited and species-specific. For instance, central place
foragers provisioning offspring are limited in their for-
aging movement and duration due to the constraints of
transporting food from distant feeding zones to the
breeding ground and the fasting ability of their offspring
[9]. Therefore, proximity of suitable feeding sites to
breeding areas is essential and foraging strategies have
evolved in order to maximize the foraging efficiency and
the rate of net energy gain [10].
Within spatially and temporally variable environments,

long-ranging central place predators such as pelagic sea-
birds search for highly productive habitats, changing
their foraging areas and strategies depending on food
availability. Consequently, they show behavioural and
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Fig. 1 Simplified representation of water masses in south-eastern
Australia (Bass Strait region) and location of breeding colonies. EAC:
East Australian Current; SASW: Sub-Antarctic Surface Water; SAC:
South Australian Current (From [36]) and Bonney Upwelling. Gabo
Island (GI) and Griffith Island (GR) breeding colonies are located on
the map (closed circles). Inset map shows the area’s position in relation
to Australia
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reproductive responses to environmental changes that
impact prey availability [11, 12]. Procellariiforms, in par-
ticular, are known to show specific adaptations to the
marine environment in their breeding strategy [1, 13,
14]. Unpredictability of marine environment means that
adults cannot regulate food supply to the nest. As a re-
sult, accumulation of body fat and slow growth of the
chicks have also been selected among many procellarii-
forms, enabling adults to return less frequently to the
nest and chicks to survive long fasting periods [15].
During the chick-rearing period, many procellariiforms

species use a dual foraging strategy including trips in dif-
ferent feeding areas or water masses [16, 17]. It generally
involves repeated alternation between short foraging trips
close to the breeding grounds and longer foraging trips
extending to highly productive areas located at a great
distance from the colony [18, 19]. This strategy represents
a trade-off between provisioning chicks and maintaining
parental body reserves. Energy transfer to chicks is more
efficient after short trips but these trips generally reduce
adult condition [20]. To restore their own nutritional
reserves, adults forage in areas often characterized by
physical structures such as frontal zones or shelf slopes
with enhanced primary productivity [21–23].
Furthermore, flexibility in foraging strategy could act

as a mechanism that allows adults to respond to variations
in feeding grounds and adapt their foraging behaviour to
buffer against variations in the distribution and abundance
of resources around the breeding colonies. Inter-annual
variations in resource availability could lead in the short
term to a decrease in foraging success and, as a result,
reduce chick provisioning and chick growth [24]. In the
long term, breeding success and adult survival might
also decrease [24, 25]. Therefore, despite the exploit-
ation of distant resources, waters near the colonies
could play a major role in the reproductive outcomes.
The variability in movement patterns would, thus, have
implications for resource allocation to survival and, ul-
timately, fitness [20]. Hence, local environmental varia-
tions could limit the benefits of the dual foraging
strategy used by the procellariiforms.
The short-tailed shearwater (Puffinus tenuirostris,

Temminck 1835) is a highly pelagic medium-sized (500–
800 g) procellariiform. It is the most abundant seabird
species in Australia, with approximately 23 million indi-
viduals breeding annually during the austral spring/sum-
mer (from September to April) on the many islands off
the continent’s southern coast, the majority of which
occur in Bass Strait [26], the shallow continental shelf area
located between Tasmania and the Australian mainland.
During the breeding period, adults provision their chicks
on a wide range of neritic prey, especially Australian krill
(Nyctiphanes australis), as well as myctophid fish and
cephalopods, caught during short foraging trips. They also
alternate these short trips with long foraging trips exten-
sively in sub-Antarctic and Antarctic waters to restore
their own body condition [27–32]. Despite numerous
studies describing the general use of the Southern Ocean
by the short-tailed shearwaters [33, 34], little is known of
how individuals respond behaviourally to inter-annual en-
vironmental variability [35].
The region of Bass Strait is mainly influenced by the

South Australian Current (SAC), the East Australian
Current (EAC) and the sub-Antarctic Surface Water
(SASW) [36] (Fig. 1). The warm SAC and EAC have low
nutrient levels while the cold nutrient-rich SASW supports
high biological productivity [37]. In addition, the Bonney
Upwelling, the largest and most predictable upwelling in
south-eastern Australia, provides a highly productive feed-
ing ground for a variety of species (e.g. seabirds, fishes,
whales and fur seals) [38–40]. Therefore, south-eastern
Australia is marked by contrasting oceanic conditions that
might influence the foraging decisions of breeding short-
tailed shearwaters in response to environmental variability.
Consequently, during years with poor conditions (i.e.

lower food availability), it is hypothesised that short-tailed
shearwaters should increase their foraging effort, both
during short and long foraging trips. As a result, individ-
uals should extend their foraging ranges in search of prof-
itable prey patches in order to meet both the nutritional
needs of their offspring and their own. Therefore the aims
of the present study were to investigate in this species: 1)
how climate variability influence the foraging strategy of
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individuals foraging in neritic (short trips) and distant
oceanic waters (long trips); and 2) its consequence on
reproductive performance. As it is unlikely that sub-
stantial variation in environmental conditions, and how
animal adapt to them, may be detected at a single loca-
tion within the short time-frames of this study [11],
short-tailed shearwater populations experiencing diver-
gent oceanographic conditions at both extremities of
Bass Strait were examined.
Methods
Study sites and animal handling procedures
The study was conducted at Gabo Island Lighthouse Re-
serve (37°33′S, 149°54′E) and Griffith Island, Port Fairy
(38°22′S, 142°13′E) (Fig. 1), with breeding populations
estimated at more than 6000 [41] and 15,000 breeding
pairs [42], respectively. Data were collected during the
chick-rearing period over three consecutive breeding
seasons (2012–2014). Burrows containing hatched chicks
were monitored daily in order to identify adults’ attend-
ance patterns. Each night, chicks were weighed using a
spring balance (±5 g). Chicks were considered to have re-
ceived a meal when their mass increased between weigh-
ing, whereas mass loss indicated no feeding event (see
[31]). Both adults were considered to be performing a
long trip when their chicks lost weight over five con-
secutive days. These burrows were targeted for GPS data
logger deployment because the adults were likely to per-
form a short trip upon return. A one-way wooden trap-
door was fitted at the entrance of the burrow. Returning
parents tripped a stick that closed the trapdoor when
entering the burrow. Adults were left for ~30–40 min in
the burrow to feed the chick and then captured for
instrumentation.
Body mass and morphometric measurements (bill

length and depth, wing length) were taken using a spring
balance (±5 g) and Vernier callipers (±1 mm), respect-
ively. All individuals were then instrumented during
early chick-rearing with an IgotU GT-120 GPS data log-
ger (Mobile Action Technology, Taiwan) packaged in
heat-shrink tubing, programmed to sample location
every 5 min (i.e. to ensure locations could be recorded
over a 4-day period [31]). Devices were attached with
black waterproof Tesa tape to feathers on the dorsal
midline (total weight was <12 g which is below the 3 %
limit recommended for flying birds [43]). Procedures
lasted <10 min and individuals were then returned to
the nest to resume normal behaviour. Birds were recap-
tured in their burrows and devices removed after one
foraging trip to sea. Upon recapture, individuals were
equipped with a geolocator attached to a plastic band
placed around birds’ tarsus (LAT2900, Lotek Wireless
Inc, 2.5 g or Mk3005 (developed by the British Antarctic
Survey), Biotrack, 2.5 g). Geolocators were retrieved dur-
ing the chick-rearing period (mid- to late-March).
A total of 50, 70 and 81 nests at Gabo Island and 106,

109 and 97 at Griffith Island were marked in study plots
at the time of egg-laying each year in November (2011–
2013) and monitored throughout the breeding season to
record the chronology of laying, hatching and fledging
(and their respective success). Out of these, a total 23, 9
and 22 individuals at Gabo Island and 18, 10 and 20 indi-
viduals at Griffith Island were instrumented with both
GPS and geolocator data-loggers in 2012, 2013 and 2014,
respectively, once their egg have hatched. Nests of instru-
mented birds were monitored after deployments and their
success was compared with a Chi-square test to the one of
the remaining nests (control group) in the studied areas.
Success was not significantly different between both
groups throughout the study period (Gabo Island, 2012:
χ2 = 0.43, P = 0.51; 2013: χ2 = 2.01, P = 0.16; 2014: χ2 = 1.25,
P = 0.26 and Griffith Island, 2012: χ2 = 0.39, P = 0.53; 2013:
χ2 = 0.87, P = 0.35; 2014: χ2 = 0.001, P = 0.97).
The present study was conducted following the ethical

guidelines of the Deakin University Animal Ethics
Committee (Approval A61-2010) and in accordance with
the regulations of Department of Sustainability and
Environment (Victoria, Australia, Permit 10005531).

Oceanographic conditions
Local environmental variables were characterized in the
marine habitats surrounding the breeding colonies and
investigated during chick rearing (January–April) for
each study period (2012–2014). A spatial grid based on
the geographic limits of the tracking data (Gabo Island:
from 149°19′E to 150°15′E and from 36°45′S to 37°52′S;
Griffith Island: from 140°23′E to 144°34′E and from 38°
20′S to 40°31′S) was built. Local ocean climate condi-
tions were characterized by deriving weekly sea surface
temperature (SST) and chlorophyll-a concentration (used
as a proxy of primary productivity) within the studied
locations. Weekly SST (°C) (AVHRR GAC SST 11
km 8-day composite) and Chl-a (mg · m−3) (MODIS
Aqua 2.5 km chla 8-day composite) values were
extracted from BloomWatch (http://coastwatch.pfel.-
noaa.gov/coastwatch/CWBrowserWW360.jsp) using the
Xtractomatic routine (http://coastwatch.pfel.noaa.gov/
xtracto/). Additionally, wind speed (m · s−1) and wind
direction (°) were used to characterize conditions experi-
enced during foraging flight. Values were obtained from
Buoyweather (http://www.buoyweather.com/index2.jsp) at
two locations in the proximity of the breeding colonies
(Gabo Island: 150°E–38°S; Griffith Island: 143°E–39°S) as
3 hourly readings and converted to weekly means.
On a meso-scale, the strength of the Bonney Upwelling

(Fig. 1) was characterized by extracting weekly SST (°C)
composites during the austral summer (from January to
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March 2012–14) within a zone between 36°S and 38.5°S
along the southeastern coast of mainland Australia to the
1000 m isobath (i.e. edge of the continental plateau) [44].
On a larger scale, the Southern Oscillation Index (SOI) was
used as a proxy of macro-scale oceanographic process.
El Niño Southern Oscillation (ENSO) is known to strongly
influence environmental conditions in southeastern
Australia [45]. Sustained positive values of SOI (higher than
+8) and negative values (lower than −8) often indicate La
Niña and El Niño episodes, respectively. Monthly means of
SOI were obtained from the Australian Bureau of Meteor-
ology (www.bom.gov.au/climate/current/soihtm1.shtml).
In addition, daily sea ice satellite-based observations (reso-
lution: 25 km) were obtained from the National Snow and
Ice Data Center (http://neo.sci.gsfc.nasa.gov/view.php?data
setId=NISE_D). Data were extracted between 80°E and
170°E and converted to weekly means during chick-rearing
for each study period (2012–2014).

Data processing and analysis
To investigate habitat use, GPS tracks were analysed with
the trip, adehabitatHR and adehabitatLT packages [46, 47]
within the R statistical environment (www.R-project.org). An
iterative forward/backward speed filter was used to remove
unrealistic locations yielding unrealistic high travel speeds
[48] (speed threshold >60 km · h−1 [29]). On average, the
speed filtering removed 0.5 % (range: 0–6.2 %) of recorded
locations during individual foraging trips. Analyses were per-
formed on complete foraging trips, defined as the time be-
tween when individuals departed from, and when they
returned to, the colony. For each foraging trip: (1) trip dur-
ation (h); (2) total distance travelled (km); (3) maximum dis-
tance to the colony (km); and (4) average bearing (°) from
the colony were calculated. To identify the feeding areas of
individuals, kernel density estimates (KDE) [49] of GPS loca-
tions were generated with grid cells of 0.01°. Because the
number of locations recorded was different for each individ-
ual, KDE was estimated for each individual and then aver-
aged across individuals to estimate a mean KDE for each
colony (see [50]). The smoothing parameter h was estimated
by least-squares cross-validation in both cases. The 50 %
kernel utilization distribution (KUD) was considered to
represent the core foraging area and the 95 % KUD the
home range of instrumented individuals.
Geolocator loggers recorded light intensity over time,

from which geographical positions were then estimated (for
details see [51]) with previous studies reporting location ac-
curacy of 185 ± 115 km [51] and 202 ± 171 km [52] for a
flying seabird. In brief, the LAT2900 data loggers recorded
light intensity every 2 min, processed the light data on-
board with proprietary algorithms from the manufacturer
(“template fit method”, see [53]), and recorded the estimated
daily longitude and latitude. They also recorded environmen-
tal temperatures (0.05 °C) and salt-water immersion at 2 min
interval. The Mk3005 units measured the light level every
minute, recording the maximum reading each 5 min inter-
vals, and also recorded time when salt-water immersion oc-
curred (state changed from wet to dry) and sea surface
temperature was recorded after 20 min in the wet phase.
The at-sea locations of individuals were then estimated
using the tripEstimation package [54, 55]. Location estima-
tions calculated from light elevation were constrained by
temperature and land masks in order to exclude unrealistic
locations [55]. Tracks with two locations per day were ob-
tained. Then a Bayesian state-space model constrained by
the average flight speed of adult short-tailed shearwater
(30.8 km · h−1, [32]) was used to improve the spatial likeli-
hood of the tracks and resample locations at regular 6 h
time intervals (R package bsam, [56]).
Inter-annual variation in foraging distribution in the South-

ern Ocean was investigated using kernel analysis on pre-
dicted locations with a smoothing parameter h of 1.8°
(corresponding to a search radius of ~200 km, [57]) and a
grid cell size of 0.2°. In order to focus on foraging distribution
in the Southern Ocean, locations corresponding to sea-
surface temperatures greater than 15 °C were excluded from
further analysis (i.e. to remove locations close to the breeding
colonies and along the Australian continental shelf). For each
year, individuals from both breeding colonies were pooled
and differences in distribution between years were based on
the proportional overlap of the 50 and 95 % kernels.
In order to investigate short-term response to environ-

mental variability, inter-annual differences in reproductive
parameters were tested with a Chi-square test. One-way
ANOVAs (or circular ANOVA for angular data) followed
by Tukeys post hoc tests were used to assess inter-annual
variations in foraging parameters and environmental pa-
rameters. Dependent variables were log-transformed when
necessary in order to meet normality. All analyses were
conducted within the R statistical environment [58]. Unless
stated otherwise, data are presented as Means ± SD and sig-
nificance level was set at α = 0.05.

Results
Some individuals could not be recaptured upon first return
to the colony, either due to the friable nature of the nesting
habitat preventing access to the studied burrows or be-
cause some individuals succeeded in burrowing out after
they had fed the chick. As a consequence, few GPS data
loggers could be recovered. Other individuals were recap-
tured after several short foraging trips but by this stage, the
GPS data logger had fallen off. Consequently, only 12, 8
and 9 individuals equipped with GPS data logger at Gabo
Island and 9, 2 and 10 at Griffith Island were retrieved in
2012, 2013 and 2014, respectively. Furthermore, due to
data logger failure, data could not be downloaded for all
the loggers retrieved. Complete short foraging trips were
obtained from a total of 41 individuals (see Table 1 for

http://www.bom.gov.au/climate/current/soihtm1.shtml
http://neo.sci.gsfc.nasa.gov/view.php?datasetId=NISE_D
http://neo.sci.gsfc.nasa.gov/view.php?datasetId=NISE_D
http://www.R-project.org


Table 1 Inter-annual comparison of mean (± SD) short foraging trip parameters in short-tailed shearwaters rearing chicks at two
breeding colonies

Colony Years 2012 2013 2014 F df P-value

Gabo Island Birds tracked 9 8 4

Trip duration (h) 16.2 ± 1.1 16.2 ± 1.4 17.2 ± 3.2 1.29 2, 18 0.30

Total distance travelled (km) 188.8 ± 58.6 182.1 ± 72.5 159.5 ± 51.7 2.27 2, 18 0.13

Maximum distance (km) 41.2 ± 8.6 41.9 ± 18.0 26.0 ± 9.1 0.15 2, 18 0.86

Bearing (°) 138.5 ± 109.9 91.5 ± 102.3 202.3 ± 38.7 2.21 2, 18 0.14

Home range (km2) 663.3 ± 217.8 827.1 ± 379.2 561.9 ± 214.3 1.28 2, 18 0.30

Foraging area (km2) 124.0 ± 33.2 179.0 ± 86.0 118.1 ± 69.3 1.93 2, 18 0.17

Griffith Island Birds tracked 9 1a 10

Trip duration (h) 18.9 ± 7.1 18.2 25.3 ± 11.4 2.06 1, 17 0.17

Total distance travelled (km) 269.2 ± 143.1 276.0 581.3 ± 222.4 8.93 1, 17 0.008

Maximum distance (km) 78.3 ± 35.0 107.2 156.6 ± 54.4 10.34 1, 17 0.005

Bearing (°) 148.6 ± 54.4 115.9 158.9 ± 63.2 0.11 1, 17 0.74

Home range (km2) 1301.7 ± 687.7 1180.9 3271.1 ± 1406.1 14.48 1, 17 0.001

Foraging area (km2) 193.6 ± 124.6 182.3 606.2 ± 288.9 15.66 1, 17 0.001

Significant results are indicated in bold (P > 0.05)
aResults for Griffith Island in 2013 were not included in the analysis
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details). Due to breeding failure at Griffith Island in 2012,
only one individual returned with its GPS data logger and
the data, while presented in summary, were excluded from
further statistical analyses. While foraging in neritic wa-
ters, significant inter-annual differences in at sea move-
ments were only found at Griffith Island. Total distance
travelled and maximum distance from the colony were
greater in 2014 than in 2012 (F1,17 = 8.93, P = 0.008 and
F1,17 = 10.34, P = 0.005, respectively, Table 1). These inter-
annual differences in foraging behaviour were associated
with differences observed in environmental parameters
Table 2 Inter-annual comparison of mean (± SD) environmental par
(January–April)

Local conditions 2012 2013

Gabo Island SST (°C) 19.7 ± 0.8* 20.2 ±

Chl-a (mg.m−3) 0.5 ± 1.0 0.5 ±

Wind speed (m.s−1) 8.6 ± 2.2 8.4 ±

Wind direction (°) 138.7 ± 47.9 138.9

Griffith Island SST (°C) 18.0 ± 0.6* 18.7 ±

Chl-a (mg.m−3) 0.2 ± 0.2 0.2 ±

Wind speed (m.s−1) 7.8 ± 1.8 7.1 ±

Wind direction (°) 156.5 ± 52.0 173.4

Meso and large-scale processes

Bonney Upwelling SST (°C) 17.6 ± 0.7* 18.8 ±

SOI −0.8 ± 5.7 4.0 ±

Sea ice concentration (%) 57.2 ± 27.4* 70.5 ±

Local conditions included sea surface temperature (SST), sea surface chlorophyll-a c
included Bonney Upwelling sea surface temperatures (SST) over the austral summe
Index (SOI) over a yearly period and the sea ice concentration in the Antarctic regio
are indicated by asterisks
between the breeding seasons. At Griffith Island, average
SST was found to vary between years with higher SST
in 2013 (F2,42 = 10.45, P < 0.001, Table 2). On the other
hand, average SST at Gabo Island was higher in 2014
(F2,44 = 12.37, P < 0.001). At a meso-scale, the strength
of the Bonney Upwelling was found to be the weakest
during the austral summer 2013, resulting in signifi-
cantly higher SST (F2,32 = 13.31, p < 0.001).
At Gabo Island, the short foraging trip hot spots dur-

ing the study period were located close to the colony in
inshore areas. Birds from Griffith Island foraged both
ameters for the short-tailed shearwater chick-rearing period

2014 F df P-value

0.9* 21.2 ± 0.8** 12.37 2, 44 <0.001

0.6 1.1 ± 1.1 2.55 2, 44 0.09

2.0 9.0 ± 2.4 1.01 2, 358 0.36

± 48.7 132.2 ± 55.9 0.86 2, 358 0.43

0.5** 17.6 ± 0.5* 10.45 2, 42 <0.001

0.2 0.2 ± 1.1 1.58 2, 42 0.22

1.7 7.8 ± 1.7 0.64 2, 358 0.53

± 58.6 179.1 ± 43.4 1.30 2, 358 0.27

0.5** 17.6 ± 0.6* 13.31 2, 32 <0.001

5.8 −2.1 ± 8.4 2.67 2, 31 0.09

26.5** 59.6 ± 27.7* 31.04 2, 47 <0.001

oncentration (Chl-a), wind speed and wind direction. Meso-scale process
r (January–March) and large-scale processes included the Southern Oscillation
n. Significant results are indicated in bold and homogenous subsets (P > 0.05)
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inshore and over the shelf-edge, extending their home
range towards King Island in western Bass Strait in 2014
(Fig. 2a and b). At Griffith Island, core foraging and
home range areas were significantly greater in 2014 than
in 2012 (F1,17 = 15.66 and F1,17 = 14.48 respectively, P =
0.001 in both cases).
Due to logistical constraints (i.e. limited period of time

to recapture individuals instrumented with geolocators
at their breeding sites), some individuals could not be
recaptured. Consequently, only 5, 3 and 13 individuals
equipped with geolocators at Gabo Island and 6, 3 and
12 at Griffith Island were recaptured in March). Data
logger failure prevented data to be downloaded from
several geolocators retrieved. Complete long foraging
trips were obtained from a total of 35 individuals. When
multiple trips were recorded, only the first long trip was
kept for further analysis. In addition, due to the small
number of birds recovered with GLS data logger during
the study period, data from both colonies were pooled
together for inter-annual comparisons. Long foraging
trips duration ranged from 16.4 ± 2.6 days in 2012 to
19.8 ± 6.3 days in 2014 (2013: 17.1 ± 2.2 days). The total
distance travelled ranged from 10,364 ± 1958 km in 2012
Fig. 2 Distribution of short-tailed shearwaters foraging in Bass Strait. Result
foraging from (a) Gabo Island and (b) Griffith Island breeding colonies in 20
informative). Darker shade colors represent the core foraging area (50 % KU
KUD contour). The dashed line indicates the location of the 200 m isobath.
to 11,260 ± 2965 km in 2014 (2013: 12,345 ± 3754 km).
A significant inter-annual difference in long foraging trip
parameters was found only in maximum distance travelled
from the colony, which was greater in 2014 (4419 ±
1010 km) than in 2012 (3393 ± 376 km) and 2013 (4074 ±
751 km) (F2,32 = 4.48, P = 0.02).
In 2012, individuals exploited mainly the oceanic zone

located south of the Polar Front (PF), as well as the Sub-
Antarctic waters located between the Sub-Antarctic
Front (SAF) and the PF (Fig. 3). In 2013, individuals for-
aged principally in the Antarctic region, as well as the
oceanic area located north of the SAF. In 2014, individ-
uals from both breeding sites exploited Sub-Antarctic
waters, as well as Antarctic waters and areas located
north of the SAF and the areas exploited were more
widespread longitudinally. Core foraging areas over-
lapped by 18 % between 2012 and 2013, 27 % between
2012 and 2014, and 34 % between 2013 and 2014. Home
range areas overlapped by 58 % between 2012 and 2013,
71 % between 2012 and 2014, and 79 % between 2013
and 2014.
Significant inter-annual differences in reproductive

performances were found at both colonies. At Gabo
s of a kernel density estimate analysis for short-tailed shearwaters
12, 2013 and 2014 (data presented for Griffith Island in 2013 are strictly
D contour), while lighter shade colors represent the home range (95 %
Inset map shows the colonies’ location in relation to Australia



Fig. 3 Distribution of short-tailed shearwaters foraging in the Southern
Ocean. Results of a kernel density estimate analysis for GLS-tracked
short-tailed shearwaters from Gabo Island (GI) and Griffith Island (GR),
performing long foraging trips during the chick-rearing period in 2012,
2013 and 2014. The darker orange (GI) and the darker purple (GR) colors
represent the core foraging area (50 % KUD contour), while the lighter
orange and the lighter purple colors represent the home range (95 %
KUD contour). Oceanic frontal zones: sub-Antarctic waters between the
Sub-Antarctic Front (SAF) and the Polar Front (PF), and Antarctic waters
south of the PF (from [82, 83])
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Island, hatching success was lower in 2013 (χ2 = 9.82, P <
0.001, Table 3). Additionally, fledging and breeding success
was lower in 2013 than in 2014, and lower in 2013 than in
2012 (χ2 = 22.46, P < 0.001). Similar trend was found at
Griffith Island for hatching success (i.e. lowest value in
2013, χ2 = 15.08, P < 0.001) whereas fledging and breeding
success was lower in 2013 than in 2012 and 2014 (χ2 = 9.99,
P = 0.007).

Discussion
Consistent with previous observations [27, 29], the results
of the present study indicate short-tailed shearwaters per-
formed daily short foraging trips over the study period
(with the exception of 4 individuals in 2014 from Griffith
Island that performed 2-day trips). At Gabo Island, short
foraging trips were exclusively performed in inshore areas
20–80 km around the breeding colony. However, total dis-
tance travelled and foraging range did not vary between
2012 and 2014, despite higher SST recorded during sum-
mer 2014. In contrast, at Griffith Island, foraging occurred
both in inshore habitat and over the continental shelf-
edge (20–240 km from the colony). Inter-annual varia-
tions were found in short foraging trip parameters but
those differences were mainly due to the individuals per-
forming longer foraging trips in 2014 and, thus, were able
to extend their range further away from the colony. While
data was retrieved from only a single individual in 2013,
the location of its foraging areas is consistent with those
in the two other years.
Despite the small sample size, this study showed that

while performing long foraging trips, birds from both
breeding colonies converged on the same areas in the
Southern Ocean. Individuals travelled 2400–6100 km
across oceanic regions, repeatedly using sub-Antarctic
and Antarctic Zones between longitude 80 and 160°
across the study period. These results are consistent with
previous studies [33, 34] and likely reflect enhanced pri-
mary productivity and a high prey availability associated
with these regions, where shearwaters mainly feed on
Antarctic krill and myctophid fish [28, 31]. Longitudinal
range was narrower in 2012 than in 2013 and 2014 and,
while non-significant, there was a trend for the average
total distance travelled in the Southern Ocean region and
the average maximum distance travelled from the colonies
to increase between 2012 and 2014 for both colonies.
Therefore, the results of the present study are incon-

sistent with the prediction that, during years of lower
resource availability, short-tailed shearwaters should fur-
ther increase their range when performing short foraging
trips. However, the results suggest that they are able to do
so while exploiting distant feeding zones. Substantial
inter-annual variability has also been shown among other
species, with individuals being able to modulate their dual
foraging strategy according to food availability [22, 59–
61]. This could indicate that individuals performing longer
foraging trips during years of poor conditions use this
strategy not only to restore their body reserves but also to
maximise foraging efficiency by reducing energetic costs.
Longer foraging trips to distant, yet more predictable and



Table 3 Inter-annual comparison of mean (± SD) reproductive parameters of short-tailed shearwaters

Colony Study year 2012 2013 2014 F df P-value

Gabo Island Nests 50 70 81

Hatching success (%) 80.0* 52.9** 70.4* 9.82 2 <0.001

Fledging success (%) 55.0* 13.5** 31.6*** 22.46 2 <0.001

Breeding success (%) 44.0* 7.1** 22.2*** 22.45 2 <0.001

Griffith Island Nests 106 109 97

Hatching success (%) 65.1* 39.4** 57.7* 15.08 2 <0.001

Fledging success (%) 50.7* 37.2** 41.1*,** 9.98 2 0.006

Breeding success (%) 33.0* 14.7** 23.7*,** 9.99 2 0.007

Parameters were recorded over three consecutive breeding seasons. Nests is the total number of nests monitored each year. The number of adults measured to
calculate body condition index is indicated in brackets. Significant results are indicated in bold and homogeneous subsets (P > 0.05) are indicated by asterisks
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profitable areas are likely to be more energetically efficient
than exploiting smaller patches with lower marine prod-
uctivity around the colony [16, 22].
Exploiting resources over a broad area has been inter-

preted as a mechanism of regulating investment in off-
spring [18, 31] and, therefore, breeding success and adult
survival are closely associated to changes occurring in the
feeding grounds. Links between chick growth and adult
mass mortalities, and fluctuations in resource abundance
were previously reported [62]. Dramatically low repro-
ductive success was recorded for both colonies in 2013.
Griffith Island is located close to the Bonney Upwelling
and the waters around it are under its direct influence.
The low breeding success observed in 2013 is consistent
with the low strength of the Bonney Upwelling that year
(as indicated by higher SST) which could have reduced
prey availability for shearwaters. Indeed, lower breeding
performances were also observed for little penguins
Eudyptula minor (Berlincourt et al. unpublished data),
Australasian gannets Morus serrator (Angel et al. unpub-
lished data) and Australian fur seals Arctocephalus pusillus
doriferus (Arnould et al. unpublished data) breeding
throughout Bass Strait in the same year suggesting un-
usually low prey availability for these predators in the re-
gion. The low breeding success observed at Gabo Island at
the eastern extent of Bass Strait could also be related to
the consequences of a weaker Bonney Upwelling through-
out the region [63], or could be linked to pulses of warmer
water being brought by the southward penetration of the
EAC [64] impacting prey distribution [65].
The breeding season 2014 was characterized by a

lower breeding participation (i.e. lower number of adults
incubating in November 2013, pers. data), after mass
adult mortality occurred in September 2013 (pers. data)
when adults returned from their trans-equatorial migration
[66]. Severe weather and difficulty finding sufficient re-
sources are likely to have contributed to this event. How-
ever, despite the possible reduction of density dependent
competition for food resources, low reproductive perform-
ance was also recorded in 2014, with a lower breeding
success recorded in 2014 than in 2012 (implying that
oceanographic conditions were still not optimum). This re-
sult could be explain by a cascade of events following the
weak Bonney Upwelling observed during summer 2013
and leading to lower nutrient concentration in Bass Strait.
Importantly, while individuals from both colonies did

not appear to increase their effort when foraging locally
during the periods of reduced local prey availability (in-
ferred from the lower fledging success), our results sug-
gest that they increased their foraging range in the
Southern Ocean. This could indicate that they were buff-
ering variability in local resource availability by exploring
and exploiting Antarctic waters more extensively. Indeed,
when performing long trips, short-tailed shearwaters
mainly forage south of the Polar Front zone in waters
where they are known to feed on Myctophid fish and
Antarctic krill (Euphasia superba), which are abundant
in this region [67–69]. Around Antarctica, the pack-ice
provides a nursery ground for Antarctic krill larvae
over the winter months. Over summer, the decay of the
sea-ice is the most important physical process and has
a large impact on the marine fauna foraging in this re-
gion; as the sea-ice retreats abundant resources become
accessible to predators [67, 70, 71].
During summer 2013, sea-ice extent was greater

around Antarctica (as indicated by higher sea-ice concen-
tration), which could have lead to less resource available for
the shearwaters. In fact, the seasonal increase in krill abun-
dance has been shown to be associated with the spring/
summer retreat of sea-ice (i.e. sea-ice is progressively
broken into floes). As summer progresses, sea-ice extent
decreases and resources become available for seabirds [72,
73]. Therefore, concentration of krill will depend on the ex-
tent and duration of sea-ice cover [74]. Shearwaters might
have had to extend their long foraging trips while searching
for food in the Southern Ocean because of poorer condi-
tions in this region in 2013. This, in conjunction with very
poor environmental conditions in Bass Strait could have re-
sulted in very low reproductive success the same year.
However, over the study period, longer foraging trips were
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observed in 2014 suggesting that individuals had to extend
their foraging range because oceanographic conditions ei-
ther around their respective breeding colony or in the
Southern Ocean were not optimum.
Conclusions
In summary, this study has highlighted how long for-
aging trips in short-tailed shearwaters may serve as a
buffer against local environmental variations to maintain
and/or replenish adult body condition, and also feed
chicks throughout chick rearing. Flexibility in foraging
strategy allows the birds to travel southward where they
can exploit extensive cold, productive Antarctic waters
and enabling them to cope with variability in local prey
availability around the breeding colony during chick-
rearing. The oceanic region of south-eastern Australia is
one of the fastest warming marine areas in the world
[75, 76] and is likely to experience substantial alterations
to the local oceanography and species distributions [64].
The complex oceanographic processes around Australia
(e.g. EAC, Leeuwin current, Bonney Upwelling) have
also been predicted to alter with anticipated climate
change [77, 78]. Furthermore, shifts in the Antarctic
marine food web have also been reported [79]. Such
changes are likely to impact the prey distribution [65,
69, 80], foraging success, chick growth and, ultimately,
reproductive success of short-tailed shearwaters. Fur-
thermore, despite less favourable conditions, short-tailed
shearwaters are more likely to invest in breeding season
than abandon the breeding attempt prior to egg laying.
This suggests that individuals of higher quality could be
able to breed more frequently than others without com-
pensatory reduction in their reproductive success or
their chance of future survival [81].
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