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Abstract

Background: Arrays of passive receivers are a widely used tool for tracking the movements of acoustically-tagged
fish in marine ecosystems; however, the spatial and temporal heterogeneity of coral reef environments pose
challenges for the interpretation of tag detection data. To improve this situation for reef fishes, we introduced a
novel response variable method that treats signal detections as proportions (i.e., percent transmissions detected or
“detection rates”) and compared this against prior approaches to examine the influence of array and transmitter
performance, signal distance and environmental factors on detection rates. We applied this method to tagged
snappers and groupers in the Florida reef ecosystem and controlled range-tests on static targets in Bayboro Harbor,
Florida, to provide methodological guidance for the planning and evaluation of passive array studies for coral
reef fishes.

Results: Logistic regression analysis indicated detection rates were primarily a non-linear function of tag distance
from receiver. A ‘model-weighted’ function was developed to incorporate the non-linear relationship between
detection rate and distance to provide robust positioning estimates and allow for easy extension to tags with
different ping rates.

Conclusions: Optimal acoustic array design requires balancing the interplay between receiver spacing, detection
rates, and positioning error. Spacing receivers at twice the distance of the modeled 50% detection rate may be
appropriate when quantification of overall space use is a priority, and would provide a minimum of 75% detection
rate. However, for research where missing detections within the array is unacceptable or time-at-arrival based
fine-scale positioning is needed, tighter receiver spacing may be required to maintain signal detection probability
near 100%.
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Background
Understanding movement patterns and space use by ma-
ture fishes is critical in determining the effectiveness of
marine reserves in conserving spawning stock biomass
and/or providing biomass to adjacent fisheries through
‘spillover’ [1]. Recent advances in hydroacoustic moni-
toring technologies have made it possible to continu-
ously and non-intrusively monitor tagged fish over long
time periods [2]. It is common practice to arrange
hydroacoustic receivers in overlapping arrays over broad
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geographic areas and apply innovative techniques to
generate detailed fish movement paths that expand upon
the basic presence/absence data recorded by individual
receivers [1,3-6]. Previous studies of tag detection pat-
terns [7] have focused on mud/sand bottom environ-
ments. The spatiotemporal heterogeneity of the coral
reef ecosystem may pose additional challenges for the
accurate interpretation of fish detection data [8].
Over time, the number of signal receptions will be

higher at nearby receivers relative to distant receivers.
Assuming a linear relationship between number of de-
tections and distance, Simpfendorfer et al. (2002)
exploited this observation to compute short term centers
of activity as the mean of the receiver locations weighted
by the number of detections during short time batching
intervals (Δt). Environmental heterogeneity may create
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variability in the relationship between probability of de-
tection (i.e. ‘detection rate’) and distance [8-10]. Within
the reef environment, each receiver in an array is ex-
posed to a unique suite of bathymetric, geomorpho-
logical, and oceanographic conditions, possibly resulting
in spatially- and temporally-distinct signal reception pat-
terns. Additionally, detection rate at distance under fixed
conditions would remain constant, but the total number
of detections expected would vary for tags with different
ping rates.
There is a need for practical approaches to estimating

the positions of acoustically-tagged coral reef fish within
spatially heterogeneous environments for tags with vari-
able ping rates [1,11]. Recent studies have applied time-
of-arrival systems to estimate tag positions when the sig-
nal is simultaneously detected by multiple receivers
[12-14]; however, the utility of these methods are limited
when assessing fish home range size. Time-at-arrival
positioning systems depend on either radio signals be-
tween receivers and a base station to synchronize re-
ceiver clocks (e.g., VEMCO VRAP) or reliable detections
by 3–4 receivers of a stationary synchronization tag (e.g.,
VEMCO VPS). These requirements severely restrict re-
ceiver spacing, substantially increasing equipment costs
to cover an equivalent area. When costs are not a con-
straint, or positioning resolution of 10 meters or less is
desired within a relatively small area, use of a time-at-ar-
rival system may be cost-appropriate. For most studies
of fish home range, however, broader receiver spacing is
needed to avoid undetected movements beyond the
acoustic array (Farmer & Ault, in Review), and useful po-
sitioning estimates may be achieved by accounting for
the probability of tag detection at a given distance from
receiver.
In this paper, we present a method for evaluating sig-

nal detections as proportions (i.e., ‘detection rates’), and
evaluate the relative influence of distance from receiver
and a broad suite of environmental and bathymetric
factors. Detections rates at known distances from re-
ceivers were acquired through controlled range-tests
performed within arrays of hydroacoustic receivers in
Bayboro Harbor, Florida and Dry Tortugas National
Park, Florida. We use these calibration data to deter-
mine important considerations for data filtering and
study design. Next, we extend the mean positioning
methods of Simpfendorfer et al. (2002) for application
in the coral reef environment by incorporating a
weighted term to account for the observed non-linear
decline in detection rate with distance. By incorporat-
ing detection rate, this method is also easily adjusted
to account for differences in tag ping rates. Finally,
we discuss balancing the interplay between receiver spa-
cing, detection rates, positioning error, and study objec-
tives to optimize acoustic array design.
Results
Calibrating receiver and tag performance
A calibration experiment performed in Bayboro Harbor,
St. Petersburg, Florida (Table 1: Test 1) utilized five VR2
receivers and recorded detection rates for n=60 10-min
time intervals for four 5s tags tested individually and
n=27 30-min intervals for two 120s tags tested individu-
ally. Detection rate (p) was defined as the proportion of
transmissions detected over a given time interval. Subse-
quent detections recorded by the same receiver at time
intervals less than 8 seconds for 5s tags (<1%) and less
than 63 seconds for 120s tags (<1%) were determined to
be echoes and were excluded from all analyses. No dif-
ferences in recorded detection rates were detected
among receivers for either 5s or 120s tags, nor between
120s tags (ANOVA, p>0.05). In contrast, recorded detec-
tion rates (detects∙10 min-1) were different for 5s tags
(ANOVA, p < 0.0001), and multiple comparison testing
revealed small but significant differences between all
four tags. Cumulatively, these differences in ping rate
would have amounted to a 5-ping difference among tags
when compared over 30-min intervals. Detection rates
for 5s tags decreased when deployed simultaneously
(ANOVA, p<0.01), due to signal collisions between the
two tags. Subsequent analyses incorporated these results
by removing echoes, calibrating tag-specific ping rates,
and testing tags individually to avoid signal interference.

Estimating tag distance from receiver
Exploratory field studies in the Dry Tortugas (Figure 1)
identified environmental variables in addition to tag
distance from receiver that could potentially affect de-
tection of pings (Table 1: Tests 2–5). For example,
regression analysis on data from Test 2 revealed a sig-
nificant declining quadratic relationship between wind
speed and ‘detections∙30 min-1′ (Figure 2A; F1,129 = 22.1,
p < 0.001). At night, wind speed explained 66% of the
variance in detection rate, with detection rates plum-
meting at wind speeds above 4 knots. It is possible that
the cumulative impact of biologically-induced and wind-
related noise exceeded the receiver’s detection threshold.
Examination of detection rates versus distance for a
diver carrying a tag and a video camera (Table 1: Test 3)
suggested that habitat complexity impacted detection
rates within 100 m, but beyond 100 m, distance ap-
peared to be the primary factor for missed detections
(Figure 2B). Decreased detection rates were observed at
increased tag distance from receivers, at shallower water
depths, and in more rugose habitats (Table 1: Test 4).
A comprehensive analysis of the relationship between

detection rate, distance, and environmental covariates
was developed. Controlled-distance experiments recor-
ded transmissions of 5s tags for n=697 30-min time in-
tervals over a range of distances and environmental



Table 1 Summary of acoustic receiver calibration experiments

Test Variables Location Tags Duration VR2 Depthrec Method

1

Tag

Bayboro 2·120s 4·5s 90 min·120s-1 30 min·5s-1 5 2.5
Tags sequentially mounted 1 m from
bottom, 5.5 m from center of receiver
curtain

Receiver

Depthtag

2

Tag

Tortugas II 2·120s 164 hrs 1 14
Tags simultaneously mounted, 2 m from
bottom, 300 m from receiver

Wind speed

TOD

3
Distance

Tortugas I 1·5s 8 hrs 8 6 – 11
Tag suspended 3.5 m above digital video
camera synced to surface GPS carried by
SCUBA diver along bottomRugosity

4

Distance

Tortugas II 1·5s 8+ min·drop-1 14 4 – 26
Tags individually mounted, 2 m from bottom,
dropped at 150 m intervals between receivers
(42 drop sites)

Depthrec

Depthtag

5

Distance

Tortugas II 5·5s (4·3H, 1·4H) 90+ min·drop-1 12 4 – 35
Tags individually mounted, 2 m from bottom,
dropped at 150 m intervals between receivers
(66 drop sites)

Wind speed

Depthrec

Tidal phase

Rugosity

Meteorological

Depthtag

Where ‘VR2’ denotes number of receivers tested; ‘120s’ and ‘5s’ denotes tags with mean 120 sec and fixed 5 sec offtimes between pings, respectively; and,
‘Depthrec’ and ‘Depthtag’ denote water depth (m) at receiver site and tag drop site, respectively.

Figure 1 Study area. Maps of: (A) Dry Tortugas, Florida; (B) study site relative to management zones, including fishable (‘open’) waters of
Dry Tortugas National Park (DTNP) and Florida Keys National Marine Sanctuary (FKNMS), no-take Research Natural Area (RNA), no-take Tortugas
North Ecological Reserve (TNER), and no-take Tortugas South Ecological Reserve (TSER); and (C) hydroacoustic receiver placements in 2006
(white circles) and 2007 (black squares) overlain on bathymetry (contour lines in meters).
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Figure 2 Preliminary findings. (A) Mean number of detections vs. mean wind speed (knots) per 30 min interval for two tags located 300 m
from a receiver in Dry Tortugas National Park, FL. Differences between day (open circles, n = 51) and night (closed circles, n = 61) detection
patterns are illustrated, suggesting additional ambient noise factor at night contributing to reduced detection rates at high wind speeds.
(B) Detection rate relative to distance from receiver for a tag carried by a diver within rugose reef habitats between receivers.
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conditions (Table 1: Test 5). Explanatory variables were
tested for multicollinearity, and correlated variables were
excluded from the final candidate list for inclusion in
regression models (Table 2). No tag transmissions ori-
ginating beyond 895 m from a receiver were detected;
therefore, analyses were restricted to transmissions ori-
ginating within this detection threshold. These data were
used to develop two types of regression models: (1) a
’distance-only’ model relating detection rate to tag dis-
tance from receiver; and (2) a ‘full’ model relating detec-
tion rate to tag distance and environmental covariates.
Estimation of the distance-only model by least-squares
regression, using the number of detected pings per time
interval as the response variable, was problematic due to
non-normality and heteroscedasticity of residuals. These
problems were not sufficiently alleviated after applica-
tion of transformation and weighting procedures [15].

Detection rate model
A logistic regression approach was adopted, using detec-
tion rate (p) as the response variable. Tag-specific ping
rates determined from calibration experiments (Table 1:
Test 1) were used to specify the total number of trans-
missions available for detection by receivers during a
time interval. Estimates of logit-transformed p values at
distance intervals of 150 m indicated a curvilinear rela-
tionship between logit(p) and distance (Figure 3A, open
squares). A quadratic polynomial of distance provided
an appropriate fit for the distance-only model (Figure 3A,
solid line). Development of the full logistic regression



Table 2 Candidate predictor variables investigated for inclusion in tag transmission regression models

Predictor Units Description

Distance m Distance between tag and receiver (range 0 to 895 m)

Distance squared m2 Square of distance

Tidal phase categorical Takes positive value at ‘slack’ tide, negative value at ‘rising/falling’ tide

Wind speed km·h-1
Continuous wind speed data averaged over interval (range 0–20.9 km·h-1);
obtained from nearby National Data Buoy Center’s ‘Pulaski Shoal Light’ C-MAN Station

Solar phase categorical Takes positive value during daytime, negative value at night (based on sunrise/sunset times in Tortugas)

Depth of receiver categorical Water depth at receiver location; takes positive value >17 m, negative value <17 m (range 4 to 34 m)
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model proceeded in a stepwise fashion, with variables
added in order of importance with respect to reduction
in the AICc (Table 3; [16,17]. Chi-square likelihood ratio
tests were used to determine appropriate parameters for
inclusion (Tables 3 and 4). Tag distance from receiver
was the most important predictor of probability of tag
detection of the variables tested. The logistic model in-
dicated that presuming a linear relationship between
detection rates and receiver distance may result in sys-
tematic underestimation of the number of detections
near a receiver and overestimation at further distances
(Figure 3B). The relationship between distance and
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Figure 3 Logistic regression analysis. The relationship between the prop
from a receiver, and environmental covariates. (A) Estimates of logit(p) ave
modeled as a quadratic function of distance (solid line). (B) Predicted num
line) vs. model-weighted distance-only function (solid line), illustrating syste
expected within 350 m of receiver and overestimation beyond 350 m. Log
(C) Scatterplot matrix of correlations between environmental covariates. Di
detection rate suggests that tight receiver spacing
(<200 m) may be required in a coral reef environment
to ensure 100% probability of detection, but reasonable
detection rates (~>50%) may be attained with ~750 m spa-
cing (Figure 4).
The only significant environmental covariate was tidal

phase (Table 4), an indicator of water current velocity,
even though all the environmental variables tested in-
fluenced the probability of detection in preliminary stud-
ies. Inclusion of tidal phase provided minimal reductions
in AICc [16,17]. Correlation between environmental
covariates (Table 5, Figure 3C), relatively low rates of
)

ortion (p) of tag transmissions detected by a receiver, tag distance
raged over intervals of distance (open squares ± SE), and logit(p)
ber of pings detected per 5-min interval from linear model (dashed
matic underestimation by linear regression (dashed line) of detections
istic function converted to pings detected using mean tag ping rate.
agonal is a histogram of values for each covariate.



Table 3 Stepwise progression of variable inclusion for logistic regression model of probability of tag detection

Stepwise Cumulative

% Reduction % Reduction

Variable category Predictor variable AIC in AIC in AICC

Intercept Intercept (×0) 963.46 – –

Distance Distance (×1) 504.84 47.60% 47.60%

Distance Distance Squared (×2) 498.12 1.33% 48.30%

Water movement Tidal phase (×3) 494.37 0.75% 48.69%

Ambient noise Wind speed ns – –

Ambient noise Solar phase ns – –

Depth/Rugosity Receiver depth ns – –

See Table 2 for description of explanatory variables.
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simultaneous detections at multiple receivers, and rela-
tively constricted ranges of values for environmental co-
variates may all have influenced this outcome.

Position estimation
Three time-interval batching positioning methods were
tested—average, observation-weighted, and model-weigh-
ted (Table 6). For each method, the mean positioning
error (PE) was over 100 m lower for static tags compared
to dynamic tags moving higher in the water column
(Figure 5). In addition, for static tests the mean PE
decreased with an increasing number of detecting re-
ceivers (JT Test: p<0.0001), whereas for dynamic tests
an increasing number of detecting receivers did not
decrease the mean PE (JT Test: p=0.43). Estimates of
mean PE were similar for each method for 1-min
(Figure 5A) and 5-min (Figure 5B) recording intervals.
Differences between harmonic and arithmetic mean
position estimates were negligible; harmonic mean estima-
tors were used for subsequent comparisons. Assuming
that a tag was located at the mean spatial position of the
detecting receivers (the ‘average’ method) was much less
Table 4 Corresponding parameter estimates for the
distance-only and full models (n=697 30-min time
intervals)

Parameter Estimate SE

Distance-only model

Intercept (b0) 7.442 0.9947

Distance (b1) −0.0261 0.0045

Distance squared (b2) 14.7E-06 4.58E-06

Full model

Intercept (b0) 7.638 1.007

Distance (b1) −0.0264 0.0045

Distance squared (b2) 14.9E-06 4.60E-06

Tidal phase† (b3) +/−0.295 0.124

See Table 2 for description of explanatory variables.
† categorical variable.
accurate than applying an observation-weighted [7] or
model-weighted approach (F-test, Tukey multiple com-
parison test, p<0.001). Mean PEs were slightly lower
for the model-weighted compared to the observation-
weighted method, but these differences were not sig-
nificant (p>0.05).
Plotting position estimates relative to known paths re-

vealed that accuracy for dynamic tests was highest when
movements were directly between two receivers; mean-
ders off the fringes of the array were poorly captured by
all methods (Figure 6A). For static tests, the model-
weighted method provided a core of detection closer to
the actual position when multiple receivers registered
several detections within a batching interval (Figure 6B).
Because the model-weighted time-aggregating method
handles detection rate as proportions, it is easily extrap-
olated to longer ping rates and batching intervals. For
example, Figure 6C shows tracks of several reef fish car-
rying VEMCO V-16 tags with different ping rates that
were post-processed using this method. A 278-day track
of a red grouper Epinephelus morio (#874; [1]) indicated
that detections were registered at one core receiver and
five surrounding receivers; however, nearly all detections
at surrounding receivers were synchronous with detec-
tions at the core receiver. Failure to apply this method
might have generated a much larger home range esti-
mate with fringes at the surrounding receivers. The 153-
day track of the yellowtail snapper Ocyurus chrysurus
(#55; [1]) indicated oscillating movements between a few
core receivers with some moderate-distance movements
to surrounding receivers. The 12-day track of the jolt-
head porgy Calamus bajonado (#56; [1]) indicated some
movements between many receivers followed by an exit
of the array. The ability of this method to provide
position fixes between receivers is well-illustrated by
Figure 6C, as is the limitation of the method that detec-
tions by two receivers can only provide a position fix in
line between the two receivers. Reef fish space use is
commonly described using minimum convex polygon



Figure 4 Receiver spacing vs. probability of detection. Application of relationship between probability of tag detection and distance to array
receiver spacing, illustrating a two receiver array with overlap at 50% detection rate. Mean probability of detection distances for 25%, 75%, and
95% are also shown.
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[18] or kernel density [19] home range estimation me-
thods, both of which are sensitive to detections on the
periphery of a range. By controlling for peripheral de-
tections, the ‘model-weighted’ method avoids overesti-
mation of space use. By providing a mean positioning
error < 200 m, the ‘model-weighted’ method also allowed
us to identify habitat utilization within the 200 m × 200 m
categorizations identified for the Dry Tortugas region by
[20]. Additional details are provided in [1].

Discussion
Our extensive calibration work provided a few unique in-
sights into the successful interpretation of coral reef fish
movements using tag detection patterns from a passive
Table 5 Pearson correlation coefficients between environmen

Distance Distance (squared) Tidal

Distance 1 0.96599 −

<.0001

Distance (squared) 0.96599 1 −

<.0001

Tidal phase† −0.02025 −0.01487

0.45 0.579

Wind speed 0.04649 0.01736 −

0.0827 0.5171

Solar phase† −0.11642 −0.05216

<.0001 0.0515

Receiver depth† −0.01963 0.00976 −

0.464 0.7158

Level of significance in italics.
† categorical variable.
array of acoustic receivers. First, our findings indicate the
importance of data filtering for proper evaluation of
acoustic signal returns. Second, using controlled range
tests in two unique environments, we identified inconsist-
encies in tag ping rates that become an important factor
in the filtering and interpretation of detection rates. Third,
we presented a new method for evaluating signal detec-
tions as proportions (i.e., ‘detection rates’), and evaluated
the relative influence of distance from receiver and a suite
of environmental and bathymetric factors. Unlike How &
de LeStang (2012), we found that the influence of environ-
mental factors on detection rate became insignificant
when considered simultaneously with distance for data
collected in a broadly-spaced acoustic array. Fourth, we
tal covariates tested for impacts on detection rate

phase† Wind speed Solar phase† Receiver depth†

0.02025 0.04649 −0.11642 −0.01963

0.45 0.0827 <.0001 0.464

0.01487 0.01736 −0.05216 0.00976

0.579 0.5171 0.0515 0.7158

1 −0.26643 0.15368 −0.05217

<.0001 <.0001 0.0515

0.26643 1 −0.13294 −0.01008

<.0001 <.0001 0.7068

0.15368 −0.13294 1 −0.00556

<.0001 <.0001 0.8357

0.05217 −0.01008 −0.00556 1

0.0515 0.7068 0.8357



Table 6 Formulae for calculating mean position of a tag in two dimensions �Χ ; �Υð Þ during a time interval Δt for
observation-weighted Simpfendorfer et al. [7] and model-weighted positioning estimators using arithmetic and
harmonic approaches

Method Arithmetic Harmonic

Observation-weighted* �Χ ¼ ∑ni¼1RiXi

∑ni¼1Ri
�Y ¼ ∑ni¼1RiYi

∑ni¼1Ri
�X ¼ ∑ni¼1RiXn

i¼1

Ri
Xi

� � �Y ¼ ∑ni¼1RiXn

i¼1

Ri
Yi

� �

Model-weighted �X ¼ ∑ni¼1 ωiX ið Þ
∑ni¼1ωi

�Y ¼ ∑ni¼1 ωiY ið Þ
∑ni¼1ωi

�X ¼ ∑ni¼1ωi

∑ni¼1 ωiX ið Þ �Y ¼ ∑ni¼1ωi

∑ni¼1 ωiYið Þ
Symbols: n = number of receivers in the array; Ri = the number of receptions at the ith receiver during time interval Δt; Xi = the X-coordinate of the ith receiver; Yi
= the Y-coordinate of the ith receiver; ωi = weighting factor, ωi = (max(di)/di), where di = model-estimated tag distance, di=f(Ri), from the ith receiver and max(di) =
the farthest estimated tag distance from any of the detecting receivers.
* Harmonic means corrected from Simpfendorfer et al. [7].
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extended the mean positioning methods of [7] for applica-
tion in the coral reef environment by incorporating a
weighted term to account for the observed non-linear de-
clines in detection rates with distance. This weighting
term also handled data as proportions, meaning it is easily
adjusted to account for differences in tag ping rates. Fi-
nally, we discussed balancing the interplay between re-
ceiver spacing, detection rates, positioning error, and
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Figure 5 Comparison of positioning estimators. Illustrations of errors ge
(closed diamond) and dynamic (open diamond) (A) 1-min and (B) 5-min ti
experiment is denoted on the graphs.
study objectives to optimize acoustic array design. We
hope that the guidance we provide in this Discussion will
enhance the efficiency of future studies using passive
acoustic tracking.
Calibration of receiver and tag performance suggested

that data filtering is a critical element for the proper in-
terpretation of acoustic signal returns. Our findings sug-
gested that echoes should be eliminated from analysis,
ation-Weighted Model-Weighted

static: n=24

dynamic: n=183

tion-Weighted Model-Weighted

static: n=25

dynamic: n=69

nerated by different mean positioning estimators (±SE) for static
me intervals. The number (n) of time intervals analyzed for each



Figure 6 Application of positioning estimators to data. (A) Comparison of dynamic tag locations at 1-second intervals (circles) versus 1-
minute mean position estimates generated for a single time interval using ‘average’ (triangles), ‘observation-weighted’ (X’s), and ‘model-weighted’
(crosses) methods. Examples shown are for movements between receivers (Example 1: gray and black fill) and outside the array (Example 2: white
fill). (B) Comparison of static tag location (gray circle) versus 5-minute model-weighted and observation-weighted positioning estimates, with
highest concentration of points indicated by 25% kernel density estimates (KDE; [19]; h=25, c=10). (C) Model-weighted 5-minute mean position
estimator movement paths relative to habitat for a yellowtail snapper (YTS), jolthead porgy (JP), and red grouper (RG) inferred from receiver
(black square) detection patterns. DTNP-RNA: Dry Tortugas National Park Research Natural Area, FKNMS-TNER: Florida Keys National Marine
Sanctuary Tortugas North Ecological Reserve.
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tag ping rates are variable, and signal collisions can re-
sult in failures to detect tags when deployed simultan-
eously. As with [21], individual receiver differences did
not appear significant. When considered separately, en-
vironmental variables were important to the detection
rate at fixed distances; however, logistic regression mod-
eling indicated tag distance from receiver was by far the
most important variable determining detection rate.
In our coral reef study environment, the relationship
between detection rate and distance was best expressed
by a logistic model. A logistic ‘model-weighted’ time-
aggregating positioning estimator was generated to pro-
duce useful descriptions of fish movements within home
ranges and across boundaries.
By calibrating receiver and tag performance, we found
that data filtering prior to evaluating reef fish move-
ments was important to eliminate echoes caused by the
reflection of the tag signal off acoustic barriers. Echoes
can be determined from minimum transmission inter-
vals for each tag. Failure to eliminate echoes could lead
to overestimation of detection rate. We also found that
continuous tags exhibit slight deviations from their spe-
cified ping rates which must be handled when using
time-aggregating detection rates to avoid compounding
minor errors and forming erroneous statistical measure-
ments of presence-absence. Additionally, we observed
signal collisions during simultaneous tag deployments,
leading to failure to detect either signal [22]. Proper
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study design can reduce the impact of this phenomenon.
A tag collision calculator is provided on the VEMCO
website (www.vemco.com), quantifying the probability of
detection of a tag given a specified ping rate and number
of tags deployed simultaneously.
Preliminary field experiments revealed several vari-

ables with an impact upon detection rate. High wind
speeds increased ambient noise in the water which may
interfere with signal detection [10,23,24]. Detection rate
was reduced at night, likely due to increased biological
noise within the receiver bandwidth associated with
snapping shrimp activity [25,26]. Increased receiver
depth reduced the signal-scattering impact of topo-
graphical features relative to available water. Habitat ob-
structions increased signal scattering and blockage.
Increased water movement associated with tidal flow
created reflective barriers, tidal bores, and eddies, in-
creasing acoustic noise and interfering with acoustic
spreading [27,28]. Logistic regression suggested that al-
though environmental variables may be important in
fine-tuning detection rate at a given distance, the domin-
ant explanatory variable for detection rate was a quad-
ratic function of tag distance from receiver, with tidal
phase of debatable importance as a secondary explana-
tory variable. Increased distance from signal origin to re-
ceiver reduced signal strength through spreading loss
and absorption [22,29]).
Our results suggested that for a spatially heteroge-

neous, shallow (<35 m depth) coral reef environment, a
linear relationship between detection rate and distance
[7] would underestimate detection rates for tags close to
the receiver and overestimate detection rates for tags far
from the receiver (see Figure 3B). The logistic ‘model-
weighted’ function provided some advances in the pro-
cess of position estimation which, when considered in
aggregate, would likely provide improved estimates of
fish home range utilization and movements. More
substantial differences between ‘model-weighted’ and
‘observation-weighted’ positioning estimators might be
expected during times when secondary variables depart
substantially from their average conditions [8] or in an
array with tighter receiver spacing where multiple detec-
tions at the distances of maximum deviation between
the methods would be more common (e.g., Figure 3B).
Regardless, the formulation of the ‘model-weighted’ esti-
mator was advantageous for the interpretation of tag
data because it appropriately handled detection data as
proportions (e.g., percent transmissions detected relative
to transmissions expected). This allowed for simple
extrapolation of detection rates determined from rapidly-
pinging tags used in receiver calibration to slower-pinging
tags typically implanted in reef fish.
Selection of an appropriate time interval for bat-

ching detections is an important consideration in the
development of accurate position estimates. Our expe-
riments suggested that less movement and/or more
detecting receivers during a time interval led to more ac-
curate position estimates. Tags implanted in reef fish typ-
ically have slower ping rates relative to calibration tags [1].
Longer intervals between pings extend tag battery life and
reduce signal collisions; however, they also require more
time to register multiple detections. Our results suggest
that a 5-min time interval might be appropriate for less
mobile reef fish tagged with 120s tags. A 5-min time inter-
val would also reduce the impacts of false detections and
signal ducting [7].
With a limited budget, optimally designing an acoustic

array involves balancing the interplay between receiver
spacing, detection rates, positioning error, and the par-
ticular objectives of the movement study. Our results in-
dicated that using an estimate of maximal distance from
a range-test of one receiver over a limited set of environ-
mental conditions to determine spacing for an entire
acoustic array may lead to a suboptimal array configur-
ation, resulting in relatively low detection rates. The in-
flection point of the logistic function at 50% detection
rate might be a more appropriate guide for receiver spa-
cing (Figure 4). Reasonable probabilities of detection
might be attained with receivers spaced at two times
their 50% probability of detection. In this scenario, the
combined detection rate of the tag is the union of the
probability of the tag being heard by either receiver. In a
two receiver array, there are four possible outcomes: (1)
both receivers detect the tag, (2) neither receiver detects
the tag, (3) receiver A detects the tag but receiver B does
not, or (4) receiver B detects the tag but receiver A does
not. Three of these scenarios result in tag detection;
thus, the combined probability of detecting the tag in a
two receiver array with spacing at 50% detection rate is
actually 75%. As the number of receivers in the array
increases, the probability of detection correspondingly
increases. Unlike in a time-at-arrival system where a
simultaneous detection at 3–4 receivers is needed to de-
termine tag position at a resolution of 1–10 m, this sys-
tem used in combination with the methods we have
described allows for much broader spacing with a positio-
ning resolution between 100–250 m. In our study’s coral
reef environment, use of a time-at-arrival system would
have required receiver spacing of around 200–250 m. For
25 receivers arranged in a 5×5 grid, this would have pro-
vided us an overall spatial coverage of 1 km2 with a posi-
tioning resolution of 1–10 m. Using our ‘model-weighted’
method, receiver spacing of 750–800 m was more appro-
priate, yielding spatial coverage of over 14 km2 with a po-
sitioning resolution of 100–250 m.
Broad spacing of receivers with ‘model-weighted’ posi-

tioning estimators appears appropriate when quantifica-
tion of overall space use is a priority, such as developing

http://www.vemco.com/
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estimates of home range size and spillover rates relative
to the scale of a marine reserve [1]. In these scenarios,
movements beyond the fringes of the array could intro-
duce error that would offset improvements in position-
ing resolution gained from tighter spacing. However, for
studies where detection gaps within the array are un-
acceptable, such as studies of directional movement,
utilization of critical habitat features, or passage through
a checkpoint, tighter receiver spacing (< 200 m) may be
required to maintain probability of signal detection near
100% (Figure 4). Additionally, the percentage of time in-
tervals with detections at multiple receivers would likely
increase with tighter spacing, resulting in improved pos-
ition resolution. Care should be taken to limit the num-
ber of fish being tracked simultaneously to control for
signal collisions, and to tag fish near the core of the
array, as passive arrays are unable to generate position
estimates outside their boundaries.
Although the exact nature of the logistic relationship

may vary dependent upon study location and technolo-
gies used, some preliminary calibration work following
the methods we have presented may substantially im-
prove a researcher’s ability to interpret resultant fish
movement detection patterns. If funding allows, the
placement of fixed position ‘calibration’ tags for the dur-
ation of the study may allow for temporally-dynamic es-
timation of the logistic function, reducing positioning
error and reducing the need for collection of environ-
mental information.

Conclusions
Logistic regression analysis suggested detection rate in
the coral reef environments of Dry Tortugas, Florida,
was primarily a non-linear function of tag distance from
receiver. Optimal acoustic array design requires balan-
cing the interplay between receiver spacing, detection
rates, positioning error, and the study objectives. Spacing
receivers at twice the distance of the modeled 50% de-
tection rate may be appropriate when quantification of
overall space use is a priority. This approach provides
reasonable positioning accuracy while reducing the
probability of undetected movements beyond the scope
of the array. However, for research where missing detec-
tions within the array is unacceptable or time-at-arrival
based fine-scale positioning is needed, tighter receiver
spacing may be required to maintain probability of signal
detection near 100%.

Methods
Calibrating receiver and tag performance
The performance of hydroacoustic tags and receivers
with respect to emitting and receiving pings in ac-
cordance with their respective technical specifications
was evaluated in a series of controlled experiments in a
homogeneous benthic environment (Table 1: Test 1).
Five VEMCO VR2 (VEMCO Ltd., Nova Scotia, Canada)
receivers were deployed along a line between two finger
slips in Bayboro Harbor, St. Petersburg, Florida. Re-
ceivers were tested with VEMCO V16-3H (transmission
strength = 158 dB re 1 μPa @ 1 m) acoustic tags. Re-
ceivers were spaced 1 m apart and suspended 1.5 m
from the bottom in water 5 m deep. There were no ob-
structions present between receivers and transmitters,
and all hydroacoustic equipment was at least 7 m from
any solid object (e.g., pier or shore). Time between
acoustic signal transmissions from a given tag was a
function of a programmed ‘offtime’ and the time to
transmit the coded pulse identifying the tag [22]. Some
tags tested were configured to ping randomly every 60 –
180 sec with a mean ‘offtime’ between transmission cy-
cles of 120 sec (‘120s’ tags); other tags had a fixed
‘offtime’ of 5 seconds (‘5s’ tags). Transmission times
were approximately 3 seconds. Performance for 5s tags
was analyzed as the number of detections obtained in a
10-min interval (e.g., ‘detects∙10 min-1′). Performance for
120s tags was analyzed as detects∙30 min-1. Tags were
deployed both individually and simultaneously. Two-way
analysis of variance (ANOVA) was used to test for differ-
ences in both tag and receiver performance as measured
by detection rate. Analysis of data from this and subse-
quent experiments utilized SAS statistical software (SAS
Institute, Cary, NC, USA).

Estimating tag distance from receiver
A series of field experiments were conducted to explore
the empirical relationship between the number of pings
detected by a receiver and the distance of the transmit-
ting tag from the receiver. An array of receivers was
deployed in the northwestern quadrant of Dry Tortugas
National Park, some 112 km west of Key West, FL,
along the border of Tortugas North Ecological Reserve,
covering a variety of benthic reef habitats and depths
(Figure 1; [20] for detailed habitat descriptions). Spacing
between receivers ranged from 600 to 1,200 m (mean =
832 m). Receivers were deployed between 4–34 m depth
and mounted 5 m above the seafloor to reduce exposure
to benthic noise sources, avoid signal blockage by habitat
features (e.g., large blocks of coral reef ), and to maintain
a superior listening angle for tagged coral reef fish [30].
To reduce acoustic noise, vinyl-coated wire or 3-strand
nylon line was used to attach receivers to anchors on
the seafloor [31].
Experiments were conducted in two phases. The first

phase entailed pilot studies in 2006, to identify environ-
mental factors in addition to tag distance that could
affect detection of pings by receivers (Table 1: Tests 2–4).
These factors included wind speed, tidal phase and tidal
height (proxies for water current speed), solar phase
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(day-night, proxy for biological noise), depth, and benthic
habitat complexity/rugosity. Habitat rugosity was deter-
mined using tools from [32] applied to high-resolution
bathymetric data. The second phase was a set of con-
trolled-distance experiments in 2007, during which 5s tags
were mounted 2 m above the seafloor adjacent to a re-
ceiver, and then subsequently moved at fixed distances
(usually 150 m intervals) away from the receiver (Table 1:
Test 5). Tags remained at each distance interval for a
minimum of 90 min. Measurements of environmental co-
variates identified in phase 1 studies were taken at each
tag location during the experiment. Each 90+ min tag de-
ployment was divided into 30 min intervals for analysis.

Detection rate model
Regression models of detection rates as a function of
distance and other environmental covariates were devel-
oped from the controlled-distance experiments following
the general form

Y i ¼ β0 þ β1Χ1 þ :::þ βΚΧΚ þ ξ i

Two modeling approaches were evaluated: (1) least-
squares regression using the number of detected pings
per time interval as the response variable (Y) following
[7]; and (2) logistic regression using detection rate (i.e.,
proportion of total pings detected) as the response vari-
able. Standard model-building procedures for multiple
regression were employed, including diagnostic tests for
multicollinearity [33].

Position estimation
Three methods were evaluated for estimating a tag’s pos-
ition at time t when detected by two or more receivers
during a time interval (Δt). The first method (termed
‘Average’) was to compute the mean position (latitude,
longitude) of the detecting receivers. The second was [7]
method of using the mean of receiver locations weighted
by the number of detections (‘Observation-Weighted’,
Table 6). The third modified the ‘Observation-Weighted’
method to incorporate regression model estimates of tag
distance from a receiver (‘Model-Weighted’, Table 6).
The weighting term was computed as the ratio of es-
timated distance between the tag and detecting receiver
i (di) relative to the farthest estimated distance of the tag
from any of the detecting receivers (dmax). The esti-
mated distance (di) is determined by inputting the
observed detection rate into the logistic function. Fol-
lowing [7], both arithmetic and harmonic mean estima-
tors for each method were evaluated.
Data from field experiments were used to compare the

three position estimation methods under two scenarios
of reef-fish movement, quiescent and actively mobile,
that represented two ends of the movement spectrum.
Data from the controlled-distance experiments described
above were used for the quiescent or ‘static’ scenario, re-
stricted to cases where a given tag was detected by mul-
tiple receivers during a time interval. For the actively
mobile or ‘dynamic’ scenario, individual 5s tags suspen-
ded 5m above the seafloor were towed by a slowly-
moving vessel (average speed = 1.3 m∙s-1) through the
receiver array. Position estimation methods were applied
to each data series using Δt of 1 and 5 min. Positioning
errors (PE) associated with each method were computed
for each Δt as the distance between the estimated pos-
ition and the actual position recorded by GPS during the
experiments. To avoid potential pseudoreplication for
the static experiment, the average PE for time intervals
at the same tag location was used as a single observa-
tional unit. A computer program was written in Java
6.10 (Sun Microsystems, Inc., Santa Clara, CA) to facili-
tate computations of PE. Analysis of variance (ANOVA)
was used to compare average PE per Δt among estima-
tion methods for static and dynamic experiments. Non-
parametric Jonckheere-Terpstra (JT) tests for an ordered
alternative hypothesis within an independent samples
(between-participants) design were used to evaluate dir-
ectional trends in positioning error relative to the num-
ber of detecting receivers [34]. Positioning estimates
were examined in a geographic information system using
25% kernel density estimates [19] developed with Hawth’s
Tools for ArcGIS [35]. The model-weighted approach was
also applied to a select subset of acoustically-tagged fish to
determine its utility in creating movement paths and de-
scribing space use. Tagging methods are described in [1].
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