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Cereal aphid movement: general principles and
simulation modelling
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Abstract

Cereal aphids continue to be an important agricultural pest, with complex lifecycle and dispersal behaviours.
Spatially-explicit models that are able to simulate flight initiation, movement direction, distance and timing of arrival
of key aphid species can be highly valuable to area-wide pest management programmes. Here I present an overview
of how knowledge about cereal aphid flight and migration can be utilized by mechanistic simulation models. This
article identifies specific gaps in knowledge for researchers who may wish to further scientific understanding of aphid
flight behaviour, whilst at the same time provides a synopsis of the knowledge requirements for a mechanistic
approach applicable to the simulation of a wide range of insect species.
Although they are one of the most comprehensively studied insect groups in entomology, it is only recently that our
understanding of cereal aphid flight and migration has been translated effectively into spatially-explicit simulation
models. There are now a multitude of examples available in the literature for modelling methods that address each of
the four phases of the aerial transportation process (uplift, transport in the atmosphere, initial distribution, and subsequent
movement). I believe it should now be possible to draw together this knowledgebase and the range of modelling
methods available to simulate the entire process: integrating mechanistic simulations that estimate the initiation of
migration events, with the large scale migration modelling of cereal aphids and their subsequent local movement.
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Introduction
Although there are approximately 5,000 species of aphid
across the world, only a handful pose a threat to cereal
production. Those that do can commonly be termed ‘cereal
aphids’, which can cause both direct damage to cereal crops
such as wheat and barley but importantly transmit a num-
ber of viruses, such as Yellow Dwarf Viruses, that can
cause even greater damage to crops. The most common
cereal aphid species globally are the Rose-Grain aphid
(Metopolophium dirhodum (Walker)), the Grain aphid
(Sitobion avenae (Fabricius)), the Bird Cherry-Oat aphid
(Rhopalosiphum padi (L.)), the Corn aphid (Rhopalosi-
phum maidis (Fitch)) the Russian wheat aphid (Diuraphis
noxia (Kudjumov)), the Indian Grain aphid (Sitobion mis-
canthi (Takahashi)), the Rice root aphid (Rhopalosiphum
rufiabdominalis (Sasaki)), the Apple grass aphid (Rhopalo-
siphum insertum (Walker)), the Blackberry-cereal aphid
(Sitobion fragariae (Walker)), the Fescue (or grass) aphid
(Metopolophium festucae (Theobald)), and the Greenbug
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(Schizaphis graminum (Rondani)). For a comprehensive
account of all aphids found on cereal crops please see
Blackman and Eastop [1]. Common to this set of highly
successful r-strategist aphid species are frequent movement
and a propensity to migrate over long distances, thus hav-
ing a high disease vectoring capacity to cause widespread
damage to cereal crops. ‘Migration’ is taken to be the peri-
odic flight of insects beyond the boundaries of their old
breeding habitats into new ones, where migrant behaviour
refers to individuals “that are relatively undistracted during
flight by stimuli that normally lead fairly quickly to the sat-
isfaction of normal appetites and especially to oviposition”
[2] pp 19. This definition is taken to apply equally to non-
ovipositing morphs which form a significant proportion of
aphids that migrate to commercial crops.
Both an understanding of, and ultimately the capability

to predict, aphid movement patterns at multiple spatial
scales are vital to achieving area-wide strategies for inte-
grated pest management of cereal aphids [3]. Area-wide
pest management programmes need to incorporate ap-
proaches that can forecast the timing and magnitude of
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pest immigration events taking into account potential
source populations. This would allow for a regional ap-
proach to pest management, thinking beyond the crop ra-
ther than employing simply a reactive within-field response.
To this end, spatially-explicit models that are able to simu-
late flight initiation, movement direction, distance and tim-
ing of arrival of key aphid species can be very valuable [3].
Many observational studies have shown that aphids are

capable of very long distance movement. A number of
studies of aphids in the USA and inferences on their mi-
gration pathways in relation to jet-streams are summarised
in Wallin and Loonan [4]. Field observations in conjunc-
tion with a study of the timing of low-level jet winds con-
firmed that aphids were efficiently transported by jet winds
from the Southern Plains to the North-central states of
Iowa and Wisconsin. Since as early as 1925, trans-oceanic
migrations of alate aphids have been noted [5]. Studies
have also noted evidence of long distance migration be-
tween Australia and New Zealand [6]. More recently, evi-
dence of limited genetic variation across large regions
points to high levels of long range dispersal activity in
cereal aphids, e.g. in Russian wheat aphid in the USA [7]
and S. avenae in Britain [8].
Several comprehensive reviews exist on the ecology of

aphid flight [3,9-14]. Much of the research conducted in
the 1950s to 1960s was founded on the theory that the
flight of alate (winged) aphids can be separated into two
phases. The first is a distinct migratory phase, followed by
an ‘appetitive’ (foraging or mating) phase [2,15,16]. Some
attributed the two phases to the weather conditions, with
predominantly passive transport in windy weather and ac-
tive flight in calm weather [17-19]. However, more recent
authors see this more as a continuum [20], where the tran-
sition between the two can be influenced by a wide range
of factors [21].
The early studies also maintained that most flights are

migratory, with only a small proportion of flights being
from plant-plant [15,19]. More recent work declares that
this interpretation of ‘migration’ is ‘overstated’ [14]. Re-
cent literature now agrees that alate aphids tend to move
mainly short distances over their lifetime, of the order of
20 m in favourable habitat and 100 m in poor habitat:
“spatial displacements (dispersal) rather than migration
sensu stricto, are the ‘norm’” [20], pp 1479, [22]. Migra-
tion is an infrequent occurrence, the ‘exception rather
than the rule’ [14], pp 293 and there is a gradation from
‘non-flyers’ to local flyers and then migrants. However,
although migration may now be considered the excep-
tion across all alates, newly emerged alates are highly
likely to attempt migration at the earliest opportunity,
although this window of opportunity is small (further de-
tails in section Basic rules of aphid flight). Subsequently, if
an aphid encounters an unsuitable host it will move on,
trying to maximise the chances of finding a suitable host
in the shortest possible time [14]. There is a large degree
of stochasticity in flight behaviour, and even a large vari-
ation in duration of migratory behaviour between clonal
individuals [23,24]. Overall, aphid flight activity is now best
viewed as a complex continuum of behaviour at multiple
spatial and temporal scales of dispersal from the plant
scale to global, with a large range of possible flight activity
spanning both inadvertent and intentional flight [3].
“Many researchers have confused host-alternation and

migration and incorrectly referred to both as migration.
The two terms are not synonymous and they describe
separate behavioural phenomena” [9], pp 462. This paper
concentrates on the primarily temperature- , crowd- and
long day- induced winged females (summer alate virgi-
noparae) which fly to fresh summer hosts or migrate be-
tween crops and grasslands as anholocyclic populations.
This is opposed to the short-day induced, winged autumn
forms that return to the primary (non-crop) host (gyno-
parae). It is known that there are distinct behavioural dif-
ferences between gynoparae and virginoparae [25-28], such
as a faster initial climb rate and longer flight duration in
gynoparae. Together the result is that where holocyclic and
anholocyclic populations combine in cropping regions
such as France, they tend to exhibit bimodal annual migra-
tory behaviour [9,29,30].
In this paper I firstly outline the four key phases in the

aerial transport process applicable to aphids, as defined
by previous authors. I then describe four core ‘basic
rules’ of aphid flight that I perceive to be of key import-
ance, which provide a framework for a simulation model
and upon which further complexity can be added, as de-
tailed in the following section ‘nuances of aphid flight
behaviour’. I then give an overview of simulation models
of aphid flight developed to date, showing modelling
achievements. This includes a summary of the approaches
that have been used, as well as examples of data collection
methods and surveillance that can help inform such
models. This indicates where more can be done to inte-
grate approaches in order to simulate the entire aerial
transport process (Figure 1).

Review
Basic rules of aphid flight
There are four key phases in the aerial transport process
for cereal aphids (Figure 1): (1) uplift at the source, (2)
transportation in the atmosphere, (3) deposition leading
to the initial distribution following transportation and
(4) subsequent local movement, after [31,32]. In relation
to each of these four stages, scientists collect various
forms of data and conduct surveillance, map and analyse
distributions and also construct simulation models, as
indicated in Figure 1. By thinking about the aerial trans-
port process in this way it is easier to assess the overall
principles of aphid migration and also to consider where
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knowledge gaps exist, as well as how we can bring to-
gether understanding from each of these four phases to
better simulate the aerial transport process [32].
Although aphid flight is a complex phenomenon acting

at multiple spatial and temporal scales [3], in order to reach
a general understanding of aphid flight and move towards
predictive mechanistic simulation of this process, a general
set of quantifiable rules must be formulated as a basis on
which we can build. To this end, I propose that the rules of
migratory flight of cereal aphids (that may also apply to a
wide range of other aphids) can be conceptualised as fol-
lowing four general principles, which are summarised dia-
grammatically in Figure 2 and the numeric parameters
given in the text are summarised in the Additional file 1 as
a quick-reference table.
Firstly, the primary factor influencing the initiation,

path, speed, distance and duration of aphid flight is wind
speed and direction. The majority of studies of these wind
effects are conducted in the laboratory, and although they
yield quantitative values some consideration should be
made of their relevance in the field and thus how these pa-
rameters should be best applied in a model. For example,
Walters and Dixon [33] recognize that winds are ‘gusty’ in
the natural environment, and therefore even when mean
wind speeds are high there are likely to be periods where
the wind speed lowers and allows for take-off. There is
strong agreement in the literature that once aphids go
above a ‘boundary layer’ at approximately 1 m from the
ground aphid movement is controlled by the wind [34-37].
Flight below this boundary layer can be termed voluntary
‘appetitive flight’. Aphids undertake appetitive flight if wind
speed is not above 8 kmh−1 [15,38-44], with their flight
path influenced by wind speed as low as 2 kmh−1 [14].
Although it should be noted that there is some evidence
that if wind speeds are higher than 8 kmh−1 aphids will
migrate, but with a delay ([38]; for a graph and equation
relating flight occurrence and wind speed see [33]). Aphids
will still take off in wind velocities of approx 10–11 kmh−1

[38]. Continuous wind velocities of 4.8 kmh−1 caused a
delay of 4–10 hrs, and wind speeds of 8 kmh−1 caused a
delay of 24 hours or more for summer migrants of A. fabae
and B. brassicae, however, after these extensions migratory
flight occurred with regularity [38]. This probably accounts
for evidence from field studies of aphids flying in much
higher winds [19].
Second, aphid migration will take place within a day

(24 hours) and primarily during daylight; aphids have a
strong preference for daylight flight initiation [45,46]
with take-off increasing almost linearly as a function of
light intensity in S. avenae and R. padi [47]. Field studies
have shown take-off occurred at light intensities of 1000
lux (approx 3.85 Wm-2) and higher, with no upper limit
[12]. Cool air at night in temperate climes means that
the upper air clears of aphids at night [12,14,39,48,49].
There is usually a double peak of migrants in the day,
the first peak being the morning migration when light
and temperature allow, the second being alates that mature
during the day [19,30,39,48]. Wiktelius’ [48] study shows
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that although flights are bimodal in early and mid-season
(spring and summer in Sweden) the diurnal flight period-
icity is unimodal during autumn migration, due to shorter
days and lower temperatures. There is also some evidence
flight can continue overnight as aphids become entrained
in high altitude atmospheric layers (particularly with war-
mer temperatures, such as experienced in Australia and the
USA [6,13,50,51]), thus increasing the window of aphid
flight making movement more difficult to forecast in such
regions [32]. Migrating over-night as well as during the day
means aphids may displace further, as the potential scale of
displacement is greater [50,52-54].
Thirdly, an individual can only migrate a distance of

several kilometres once (if at all) during its lifetime
[22,50,55], and that single long distance migratory flight is
most likely to be the aphid’s maiden flight [3,12]. There is
evidence that many species show wing muscle autolysis in
as little as 2–3 days after moult [14,28,46,56-60]. There is
also known to be a ‘waiting period’ also termed the ‘teneral
period’: the period between moulting and taking flight,
which varies from 6–36 hours [19]. Due to this as well as
environmental limitations to flight, it is considered that in
fact aphids spend much of their lives unable to fly [3], with
migratory flight only possible via active take-off and ascent
within a limited time window of approximately four days
from moulting [56,61,62]. The aphid’s take-off angle will
also become more acute during this time, limiting the po-
tential to reach the planetary boundary layer and thus
travel long distances [52,63]. However, this doesn’t mean
that aphid migration is a rare event; it is common, al-
though seasonal [3], and it is likely that all alate aphids will
attempt to migrate during their lifetime at least once given
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the opportunity: which will be constrained to a window as
defined above.
Finally, ‘normal’ migration will generally last only 1–3

hours [14,15,25,26] and is known to be as short as 30
minutes or less for spring and summer migrants [25,26].
The percentage of aphids remaining airborne after a
given time is also estimated in the literature, where only
0.1% of aphids are estimated to remain airborne after 3
hours [64]. The resultant dispersal distance within this
timeframe would be of the magnitude of tens of kilo-
metres from a source, as shown in South Australia for R.
padi along a transect from an irrigated pasture source
through annual grasses [65]. However, this may be an
underestimate, as higher mean flight durations to exhaus-
tion for cultured aphids of 5.3 hours and 8.9 hours for
field-collected aphids have been observed, with a positive
correlation of flight duration with aphid weight [66]. This
study aligns with the flight capacity of tethered R. maidis
studied by Liquido and Irwin [61], who found a strong ef-
fect of aphid age and lipid content: alate adults under a
day old could fly for up to 14.3 hours, two-day old aphids
flew for a maximum of 6.5 hours, and four-day-old aphids
flew a maximum of 1.75 hours. During migration the
aphid is assumed to be carried by the wind a distance de-
termined by the flight duration multiplied by the wind
speed, in the direction of the wind’s movement [14,38].
However, it is now known that aphids do not behave in an
entirely ‘passive’ manner whilst migrating with the wind,
particularly in relation to the altitude gained [64] (see In
flight, below).
Subsequently, repeated alighting, brief probing and re-

take-off from hosts and non-hosts is a common pattern
among Aphididae [67,68], generally termed ‘appetitive
flight’.

Basic rules of appetitive flight
Alate aphids lose control of their flight at wind speeds of
around 2 kmh−1 [14,38]. Thus it can be inferred that ap-
petitive flight may occur at low wind speeds (2 kmh−1 or
less), taking the form of increasingly ‘random movement’
as wind speeds lower, and short flights tend to be con-
centrated around host plants [67]. Harrington et al. [69]
found that 27% of winged R. padi re-takeoff at least
once. Appetitive flight behaviour is thought to differ be-
tween alate aphids that have undergone migration and
those that have not, as their degree of rejection of alight-
ing surfaces differs [9]. In general, the flight speed of
aphids is between 0.8-3.3 kmh−1 [12]. This is in agree-
ment with Compton [36] who states that the maximum
flight speed of aphids is 0.9 ms−1 (3.24 kmh−1). To ob-
tain the maximum distance flown by foraging aphids,
this maximum flight speed can be multiplied by the total
foraging flight time of an aphid, which is about 30–240
minutes [15], pp 84. The resultant maximum distance
would be around 200 m (without wind assistance). Indi-
vidual appetitive flights will be much shorter than this,
just a few metres [70] where aphids fly for only a few
seconds up to around 5 minutes at a time, depending on
the suitability of the habitat and aphid exhaustion [15].
Aphid flight capacity for self-propelled flight has also been
shown to be strongly influenced by the age of the aphid
[61] and also to be influenced by whether the aphid is
viruliferous (R. padi with BYDV): nonviruliferous aphids
over 40 hours old were found to have a greater flight capa-
city than their viruliferous equivalent [62]. Other factors
known to influence aphid appetitive flight include plant
structure and crop architecture [71].
Apterous (wingless) aphids move from plant to plant

very small distances, at a speed of around 5–20 cm min-1

depending on the species [12], or may ‘run’ from 15–35
cm min-1 [12,23,67]. Although small, it is thought that
these movements of apterae are significant, allowing
aphids to spread locally through crops more efficiently
than by flight alone [72,73], particularly as a response to
disturbances such as wind, herbicide, predators, crowding,
mechanical disturbance, drought and virus-infected plants
[73] (but notably not rain, although others have found rain
effects to be important [74]).
Beyond these basic principles, a fully mechanistic un-

derstanding of short-range, appetitive dispersal of aphids
has not been reached, as there are a multitude of factors
that can influence the short-range flight initiation, distance
and landing of the aphids that act often simultaneously
with varying importance that is not well understood, with
often conflicting results reported in the literature [3]. Such
factors that may influence the flight of aphids include
landscape elements (such as hedgerows and trees), crop-
ping systems and crop phenology [75]. It is possible for
these to be taken into consideration in a spatially explicit
simulation model e.g. [76].

Nuances of aphid flight behaviour
Although it is possible to construct some very general
rules that might be viewed as broadly governing the aphid
movement process as above that can form a basis for a
model of aphid flight, it would be a mistake to consider
that these rules apply universally to all aphid species and
to all alate morphs. This section now addresses some of
the complexity of aphid movement, and a range of add-
itional important biological and environmental factors that
should also be considered in understanding and simulat-
ing aphid migration.

Take-off
Aphids are very sensitive to a range of environmental
factors that determine whether they take-off. These in-
clude crowding, wind speed, temperature, day length, light
levels, humidity and crop growth stage or quality. Not all
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factors always apply, depending on physiological traits of
the aphid such as age and morph. For example, gynoparae
have a greater tendency to short-day induced migration,
however other winged forms are less likely to show migra-
tory urges during maiden flight [14]. Temperature, photo-
period and crowding also determine the proportion of
alate morphs forming in the population [20,77,78], for ex-
ample as described for alate viviparous females of R. padi
[79] and for S. graminum [80], where host plant was also
found to be a factor. This is alongside genetic factors and
is still a large area of ongoing research, for a recent review
see [81].

Host plant conditions
Aphid starvation is thought to be a significant factor af-
fecting flight initiation [82], as well as host plant quality
(including the presence of the virus BYDV) [62,83] and
the presence of natural enemies [6,44,84]. Although many
of the cereal aphid species feed on multiple grass hosts,
periodic harvesting of crop hosts or dieback of grasses dur-
ing drought may stimulate mass movement. Crop growth
stage may instigate migration; alate aphids were stated to
disperse from crops (in Victoria, Australia) during the
October-November period ‘as the crop matured’ [6]. For
some key cereal aphid species such as R. padi and S. ave-
nae a relationship between host plant quality and dispersal
has been observed [77], although this same study shows
that across all aphid species there are conflicting results on
the relationship between host plant physiology and the
propensity for aphid movement.
Plant structure and crop architecture also have an im-

portant influence on flight initiation as they affect the
ability of aphids to move up above the plant boundary
layer and affect local environmental variables such as wind
speed to permit take-off [68], with some indication that in
mixed cropping aphids depart more readily due to in-
creased wind barriers and shade effects [44].
Crowding may stimulate flight as jostling of aphids on

the plants can pre-condition alates for flight take-off
[33,46,85]. Furthermore, migration has been associated
not just with crowding in the adult stage, but also with
crowding experienced in nymphal stages leading not
only to wing formation in the adult stage but also to in-
creased migratory behaviour [86]. Pseudo-crowding mech-
anisms are also thought to result from aphid response to
the presence of natural enemies, thus flight initiation may
be partially attributed to natural enemies in this way [3].
Natural enemies may also simply disturb aphids into mov-
ing away and falling off a plant or initiating flight that can
lead to both long- and short-distance dispersal [3] and ref-
erences therein. Overall, the relative importance of natural
enemies to dispersal initiation and the interaction with en-
vironmental factors, aphid density or plant quality is un-
clear [3].
Environmental factors
Low temperatures have been shown to inhibit the take-off
of cereal aphids in the field [33]. Although the threshold
for flight of cereal aphids is given as about 14-15°C [45],
in reality this threshold is a guide only and not a firm
limit. Movements on a daily timescale are adaptable and
can simply be delayed by low temperatures and are known
to be region-specific see also [48,75,87]. For example, R.
padi adapt to the conditions at the season of their devel-
opment and any delay experienced due to adverse temper-
atures lasts only for a matter of hours, and is not believed
to actually prevent movement of the alate morphs [33].
Likewise, high temperatures may also inhibit the take-off
of cereal aphids, with the maximum temperature thresh-
old presumed to be around 31°C [12], but with some ex-
ceptions such as S. graminum with a threshold of 41-42°C
[12]. However, less is known about how high temperatures
may impact on aphids other than on aphid mortality, and
more research is required [88].
Early studies indicated that dry conditions favour aphid

migration [40]; humidity will inhibit take-off if it is greater
than 70% [41,89,90], although other studies have shown
this effect is so temporary that it can be considered irrele-
vant [91]. There are also studies that have evidence to the
contrary, for example high soil moisture is associated with
high aphid populations and thus increased migration [92].
The mechanism of the impact of humidity is unclear;
whether directly on flight behaviour or indirectly on re-
production. Therefore this is an area that could benefit
from further investigation [19].

In flight
Migrant alate aphids ascend rapidly up into the atmos-
phere if they are carried by convective updrafts with
rates of ascent measured at up to 3 ms-1 [50]. Even with-
out an updraft, aphids may ascend rapidly when in a mi-
gratory state, e.g. Aphis fabae ascend at 0.25 ms-1 [93],
climbing fastest soon after take-off though the rate may
fluctuate [15]. Aphids may reach very high altitudes, in-
cluding the low-level jet stream [4,51]. In general, aphids
can be carried long distances by winds at 300-1500 m
[91]. Below 1 km (in the atmospheric convective bound-
ary layer (CBL)) insects, including aphids, are common
in the atmosphere and are generally concentrated in well-
defined plumes [94]. Whilst they may even gain heights of
around 2.5 km [95], their density generally decreases sys-
tematically with altitude [54]. At lower altitudes where
aphids are common, topography may have a significant im-
pact on long distance dispersal, including mountain ranges
and trees [65]. Temperatures influence the distribution of
aphids in the atmosphere, for example temperature inver-
sions leading to atmospheric stratification, which can in-
hibit upward movement of aphids at times or entrain
migrant aphids within the planetary boundary layer [54].
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There is evidence that there is a behavioural compo-
nent to aphid flight even whilst in the airstream, so that
aphid flight should probably not be considered entirely
‘passive’ [64]. There is also evidence that rain may increase
both the amount of aphid movement and the distance
travelled, although rain also leads to increased mortality
[4,92,96].
Due to the strong influence of wind on aphid flight,

long-distance movement of aphids may not actually be
due to migration, rather due to accident where the aphid
may have been caught in an updraft that has led to inad-
vertent long-distance wind-borne displacement [12,97].
However, this is much less common than migratory long-
distance movement [3], and so in general it can be as-
sumed that long-distance flights are predominantly due to
migratory behaviour in aphids.

Landing
Although at what point and for what reason during their
flight aphids decide to land remains largely unknown
[31], one of the key factors that appears to determine
when an aphid lands is renewed visual responsiveness to
plant-related wavelengths. Aphids are attracted to wave-
lengths > 500 mμ, especially yellow, also green and or-
ange [47,98]. They have been shown to actively bypass
blue to ultra violet spectrum when landing (whereas at
take-off they are highly responsive to this wavelength)
[47]. This has been tested in the field, but some species
are less attracted to certain wavelengths than others
[12,14,36,98]. This knowledge has translated into inte-
grated pest management strategies in horticultural crops,
with the use of silver reflective plastic mulch to deter
the arrival of aphid disease vectors [99].
Physical factors such as exhaustion are postulated as

possible causes of flight termination; however lab experi-
ments and field studies have not linked lipid reserves
with flight distance [31].
3-D visualisations and analysis of aphid flight in the la-

boratory and the field have been conducted [100], these
show that when landing, aphids compensate for wind
direction and strength in order to maintain flight path
direction and that they land preferentially into the wind.
However, even if an aphid switches behaviour to try and
land, it may be such that meteorological conditions such
as strong airflow inhibit landing, particularly for aphids
flying in low-level jet streams during nocturnal hours in
warmer climes [54]. Another meteorological factor is
precipitation, although it is not clear in the literature the
importance of this [31,75]. Precipitation may wash some
aphids from the air [91,101]. Heavy rain (large raindrops)
is probably most effective at cleaning the air, however
heavy rain immediately after aphid fallout may even kill
newly arrived aphids on the plant [4,102]. Temperature
may also have an influence on whether an aphid continues
to fly, and these thresholds differ considerably from take-
off temperature thresholds [60,103].
Landscape structure at multiple spatial scales may be

important in determining aphid landing behaviours and
arrival rate; however there has been little work done on
this to date, with landscape studies mainly focused on
abundance of aphids and their natural enemies. There is
some within-field evidence that mixed cropping reduced
landing rates of aphid species on sorghum and soybean,
compared to soybean monocultures [104]. Crop variety
and configuration, as well as growth stage, may therefore
have an important influence on aphid landing [83]. Some
studies indicate that host density is not important in de-
termining whether an aphid lands [12], although there is
some evidence to the contrary where ground cover ap-
pears to be important [104].
Overall, the termination of aphid flight remains a par-

ticularly complex area where less data is available and
fewer conclusions have been reached to date. As Hendrie
et al. state, “We initially theorized that the factors deter-
mining flight termination and their interdependence would
be much simpler than they proved to be” [31], pp 567.

Simulating aphid migration
To simulate aphid migration it is necessary to bring to-
gether process-based population dynamics models to
model flight initiation (Figure 2) and long-distance dis-
persal simulation techniques using wind trajectoriesa.
Such integrated simulation methods are now available to
study the entire aerial transportation process through
four phases: at the source, in the atmosphere, the initial
distribution following transportation and subsequent local
movement and risk (see Figure 1). Knowledge of the po-
tential source locations of aphids is therefore highly im-
portant along with their population dynamics at that
location, but in many cases this may not be known [3].
However, in this case a trajectory modelling approach may
also allow for identifying the source of an aphid outbreak
using ‘back-trajectories’ e.g. [105].
The concept of trajectory modelling for long distance

migration of aphids is not new [31,106]. However, due to
the volume of data required, there are numerous chal-
lenges to transferring, storing and processing atmospheric
data for trajectory models. Therefore, many models that
have explored aphid flight in the past have focused primar-
ily on flight initiation (often data-driven rather than a
simulation approach) and local dispersal modelling, rather
than long distance migration (with the notable exception
of the trajectory simulation models of Isard et al., although
these are also data-driven). Recently the entomological
data collection tools, meteorological data, modelling tech-
niques, computational power and knowledge about aphid
migration behaviour have become sophisticated enough
to begin to establish realistic and robust long distance
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migration simulations. There is also now the opportunity
to begin to integrate methods to simulate multiple phases
of the atmospheric transportation process (Figure 1). Here
I give a summary of existing models of aphid flight and
the range of data sources and data collection methodolo-
gies, in addition to the rich literature already described,
that can help to parameterise and validate them.

Data collection
There are a number of observational methodologies and
examples of studies that have attempted to track insect
movement [11,14,107]. These include back-tracing, to
find out from where insects may have originated [6,106],
direct tracking techniques such as radio-labelling [108],
suction trapping, used widely in the UK and Europe, as
well as the western USA [109-114] and aerial sampling
[31,53], including the use of aircraft-mounted sampling
devices [54]. Other field-based studies have observed
landing rates that are indicative of aerial movement [55],
including with the use of pan trapping methods or small-
scale suction sampling e.g. [115]. Recently, video and radar
observation methods have been applied [116,117] using
concepts developed in the late 1980s to detect aphids by
the Pest and Weather project of Illinois [118], along with
the use of molecular markers and genetics [8,109]. Genetic
and electrophoretic methods for back-tracking are begin-
ning to help us understand where various airborne aphids
came from [119-121]. Combinations of these methods
have given valuable insights, such as identifying whether
aphids are more likely to be originating from long-distance
or local sources [122], using a combination of suction trap,
field sampling and genetic data analysis. However, the
challenge of obtaining concurrent measurements of pro-
files of aphid density alongside atmospheric and environ-
mental variables as highlighted by Isard et al. [54] largely
remains, along with a full understanding of the physio-
logical limits that determine the duration and capacity of
aphids for long-distance movement.

Existing aphid flight simulation models
Although a range of methods and ongoing surveillance
for aphid data collection exist, the spatial coverage is
patchy and overall there are limits to what knowledge
can be gained by observation alone about aphid flight
behaviour, without also exploring with simulation model-
ling approaches [123]. A recent summary of some existing
aphid population dynamics models exists [75]. However,
the majority of models summarised in that review are
aspatial, focused on the population dynamics of the aphid
with simple parameters or equations to represent immi-
gration e.g. [124].
Some models have simulated cereal aphid movement or

the timing of arrival of migrants into crops (Table 1). In
general, these have done so by either ignoring complex
population dynamics of the aphid and focusing on atmos-
pheric processes along with simplified behavioural rules
[64] or by coupling with observations to provide data on
aphid migrant numbers without simulating the processes
leading to aphid movement [55,125]. Hendrie et al. [31]
provided a conceptual framework for the mechanistic
simulation of aphid migration using trajectory modelling
(there are now examples of this type of model applied to
R. padi [95,126]), R. maidis and S. graminum [13], with
the same technique applicable across a wide range of spe-
cies). Simulation models of the spread of BYDV have
tended to be at the field scale, with aphid vector immigra-
tion as an input, usually estimated from suction trap data
or field survey e.g. [127].
The simulation models listed in Table 1 span a broad

range of techniques, from analytical approaches to highly
mechanistic individual-based models. There are pros and
cons to the use of each of these methods, as discussed in
recent guidelines by Parry et al. applicable across the gen-
eral field of pest modelling, where some approaches may be
better applied than others at certain scales, given the mod-
elling objective and constraints [147]. Thus, in order to ef-
fectively simulate the full aerial transport process, it may be
necessary to take a hybrid modelling approach to ensure
the most appropriate techniques are applied (for example a
coupled cohort-based or analytical population dynamics
model with an atmospheric trajectory model [126]).
There are also models that have been developed for

other aphid species that are not pests of cereal crops
that are of note. For example, local scale movement of
Aphis gossypii is simulated within a melon crop field
using an individual-based modelling approach to give a
sophisticated theoretical account of the evolution of dis-
persal strategies for this species [148]. Also of note is the
use of back-trajectory modelling to relate spring low-
level jet (LLJ) streams to intensity of Myzus persicae flight
activity in the northern USA, which were then used to in-
form a simple linear regression model to project aphid
population growth at crop sites in relation to the cumula-
tive duration of LLJ events [105]. This approach was also
applied to cereal aphid species R. padi, R. maidis, S. gra-
minum and S. avenae, however no consistent relationship
could be found between the duration of LLJ events and
aphid population growth for those species [105], contrary
to the findings of Irwin and Thresh [13].
Overall, although simulation models developed to date

span the full range of the atmospheric transportation
process, they tend to focus on each individual compo-
nent, rather than the process as a whole. However, along
with the depth of knowledge available on the mecha-
nisms of aphid flight, this modelling toolbox now gives
the opportunity to move towards simulation models that
are capable of integrating the mechanisms of flight initi-
ation, the transportation process and the arrival of aphids



Table 1 Cereal aphid models simulating aphid movement or timing of arrival in crops

Model characteristics Aim Country Scale Phase(s) of the transport
process included

Reference

Turbulent advection simulation/
Lagrangian stochastic

To investigate aerial density profiles in relation to
simplified aphid behaviours

UK Long distance migration Transport in Atmosphere [64]

Atmospheric trajectory model
of dispersal

To estimate migration pathways Finland Long distance migration Transport in Atmosphere [95]

Trajectory Modelling aphid migration from source to sink Illinois, USA Long distance migration Transport in Atmosphere [13,31,106]

Trajectory coupled to
cohort-based
population dynamics

Mechanistic simulation of aphid population dynamics
at source and factors leading to take-off, coupled to
wind a trajectory simulation model to estimate
potential long distance movement risk from
irrigated pastures to crops.

South-western Australia Long distance migration Source, Transport in
Atmosphere, Initial
Distribution

[126]

Large-scale: Diffusion–advection-
reaction equations

To simulate the landing rate of Sitobion avenae in crop
fields across landscapes. Explores landing behaviours
and responses to landscape (e.g. wavelengths).

France Landscape (multi-scale) Initial Distribution [123]

Small-scale: cellular automata
incorporating behavioural rules.

Hierarchical Bayesian Driven by field observations to gain knowledge on
processes such as insect landing and mortality

Germany Within-field Initial Distribution [55]. See also
[125,128,129]

Analytical regression Prediction of the timing of migration into crops from
primary host (holocyclic populations only)

Denmark/Scandinavia Within-field Initial Distribution [130,131]

Analytical regression Prediction of the timing of migration into crops from
primary host (holocyclic populations only) – requires
suction trap data

Sweden Within-field Initial Distribution [132]

Analytical regression Prediction of the timing of migration into autumn
crops – requires suction trap data

Wales Within-field Initial Distribution [92]

Analytical regression Prediction of the timing of migration into autumn
crops – requires suction trap data

UK Within-field Initial Distribution [133]

Analytical regression Prediction of the timing of migration into spring
crops – requires suction trap data

UK Within-field Initial Distribution [134,135]

Individual-based Stochastic wind-driven dispersal model to examine
difference in dispersal and population dynamics
depending on pesticide regime

UK Small landscape Local Movement [76]

Cohort-based population
dynamics model (STELLA)

Population dynamics model that simulates immigration
from a ‘background’ source population. Spatial variation in
immigration at the regional scale driven by differences in
soil moisture levels.

South-western Australia Within-field Initial Distribution
(from local source)

[136]

Analytical mathematical model Estimation of the percentage of plants infected with BYDV,
given the number of aphids per plant. Distinction between
alate migrant transmission and apterous transmission.

UK Within-field Initial Distribution,
Local Movement

[137]

Cohort-based Aphid population dynamics, local dispersal and
virus sub-models.

UK Within-field/small landscape Local Movement [138]. See also
[69,139]

Parry
M
ovem

ent
Ecology

2013,1:14
Page

9
of

15
http://w

w
w
.m

ovem
entecologyjournal.com

/content/1/1/14



Table 1 Cereal aphid models simulating aphid movement or timing of arrival in crops (Continued)

Cellular Automata Rate of spread of BYDV from an origin cell, based on
probabilities of infection transferring to the next cell
(combined with field observations).

UK Within-field Local Movement [140]

Individual-based Simplified model of aphid population dynamics and virus
transmission from plant to plant. Focus on computing
methods rather than ecology.

UK Within-field/small scale Local Movement [141,142]

Analytical probabilistic model and
Markov chain model of disease
transmission. Individual-based
aphid movement through field.

Examines aspatially the implications of vector preference for
diseased or healthy hosts on the spread of BYDV. A Markov
chain model and a stochastic individual-based model
examine disease transmission and the effects of
spatial patchiness.

USA Non-spatial (analytical)
and spatial within-field
(Markov chain).

Local Movement [143] see also
[144]

Artificial Neural Networks and
multiple regression

Aphid autumn flight timing/numbers. No BYDV. New Zealand Autumn flight Source [145]

Analytical linear and probit models Soybean aphid early season colonisation of fields from
overwintering hosts.

Canada Spring flight. Within-field. Source, Local Movement [146]
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on hosts, to better inform area-wide pest management
strategies.
Conclusions
There is an extremely rich literature spanning decades
that is relevant to understanding many aspects of cereal
aphid flight and migration. Some aspects of movement
have been studied multiple times which increases confi-
dence in our knowledge, such as the threshold wind
speed of 8 kmh-1 that restricts flight initiation. However,
although this threshold has emerged quite clearly from a
number of studies (primarily conducted in the labora-
tory), there is the issue that studies over a longer time
period and from the field show that aphids will take flight
even in high wind speeds; therefore when flight thresholds
have not been put to the test in so many ways we should
continue to question them (for example humidity).
Such a wealth of information can be overwhelming,

particularly to construct a simulation model of aphid flight.
To this end, I distil cereal aphid migration into four phases,
and conceptualize the flight of cereal aphids as following
four key principles, around which are ‘nuances’ of aphid
flight behaviour that might be incorporated into a model
(but about which there is greater uncertainty).
The overall conceptualization of aphid flight has chan-

ged over the years, from assuming that migration was
common to now considering that it is the exception, ra-
ther than the rule, predominantly occurring in newly
emerged alate adults. Furthermore, there still remain some
aspects to aphid flight that we have only recently realised,
having made assumptions for many years that are now
considered incorrect. For example, there is now evidence
of the ability of aphids to control their elevation in an air-
column, questioning the assumption that their flight be-
haviour during the transport phase can be assumed to be
completely ‘passive’ [64].
Despite such rich information in the literature, there

are still significant gaps in our knowledge. An important
gap seems to be quantification of humidity and high tem-
perature thresholds for flight initiation: likely to become
increasingly significant under global climate change for re-
gions that are already pushing the climatic niche for some
aphid species, such as R. padi in Australia [149]. Landing
cues and the processes that control the termination of
flight are an obvious gap where knowledge is poor and em-
pirical studies are difficult to conduct, but observational
data is available. The multi-scale model by Ciss et al. [123]
explores multiple hypotheses about landing cues and dem-
onstrates the potential of simulation modelling to advance
our understanding of this process, particularly if tested
against observational data. It is important to build on this
with further simulation modelling studies coupled with ob-
servational or empirical research, as together they provide
a powerful tool to test hypotheses about migration patterns
observed in space and time.
An important aspect to the integration of models with

data is the ability of models to ‘scale-up’ data collected
over short time periods or limited spatial scales. Models
are increasingly used to explore multiple hypotheses and
scenarios, against which we can collect data to verify,
potentially using a ‘pattern oriented’ approach to explore
the most probable explanations offered by the model in
comparison with data [150]. We cannot hope to ever
collect enough observational data or conduct empirical
studies alone that can give us an understanding of the
entire process of cereal aphid migration and flight, how-
ever when combined with mechanistic, scalable simula-
tion modelling approaches this becomes achievable. This
would lead to an understanding that can help us deter-
mine and manage aphid problems not just within-field
but at the landscape scale, taking into account source
areas to develop management strategies operating at mul-
tiple spatial and temporal scales.
Data on various aspects of cereal aphid flight and mi-

gration is increasingly available and the range of method-
ologies with which we can obtain such data has increased
in recent times, for example with genetic tools and radar
observations. It is important that long-term data collec-
tions continue, such as suction trapping data which has
been shown to be valuable in regions such as the USA and
Europe but is yet to be established in other regions, such
as Australia [151].
Finally, the rapid population increase and high mobility

of cereal aphid pests are key factors that make them highly
damaging; aphids, being so well studied and modelled, can
provide a blueprint for identifying the research needs to
manage other highly mobile insect pests, that are likely to
be less well studied.

Endnotes
a“The trajectory or path of an air parcel is a curve de-

noting successive three-dimensional positions in time of
the air parcel” [152] pp 2.
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